Ionospheric electron density modelling using B-splines and constraint optimization

 Many modern applications, such as precise point positioning, autonomous driving or precision agriculture would benefit significantly if a high-precision and high-resolution model of electron density in the ionosphere and the plasmasphere would be globally available. Since the development of such a...

Full description

Saved in:
Bibliographic Details
Published inEarth, planets, and space Vol. 74; no. 1; pp. 1 - 23
Main Authors Lalgudi Gopalakrishnan, Ganesh, Schmidt, Michael
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2022
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1880-5981
1343-8832
1880-5981
DOI10.1186/s40623-022-01693-4

Cover

More Information
Summary: Many modern applications, such as precise point positioning, autonomous driving or precision agriculture would benefit significantly if a high-precision and high-resolution model of electron density in the ionosphere and the plasmasphere would be globally available. Since the development of such a model still relies on data with insufficient and uneven global coverage, the consideration of background information and the introduction of equality and inequality constraints on Chapman key parameters are essential. In this work, we develop a multi-layer Chapman model based on B-spline expansions of selected key parameters of the electron density. The unknown series coefficients of the key parameters are subject to equality and inequality constraints. Finally, the developed model is applied to a combination of real and semi-simulated input data; the results are validated through ionosonde measurements. Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1880-5981
1343-8832
1880-5981
DOI:10.1186/s40623-022-01693-4