The Evolution of the IR Luminosity Function and Dust-obscured Star Formation over the Past 13 Billion Years
We present the first results from the Mapping Obscuration to Reionization with ALMA (MORA) survey, the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey to date (184 arcmin 2 ) and the only at 2 mm to search for dusty star-forming galaxies (DSFGs). We use the...
Saved in:
Published in | The Astrophysical journal Vol. 909; no. 2; pp. 165 - 179 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.03.2021
IOP Publishing American Astronomical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 1538-4357 |
DOI | 10.3847/1538-4357/abdb27 |
Cover
Summary: | We present the first results from the Mapping Obscuration to Reionization with ALMA (MORA) survey, the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey to date (184 arcmin
2
) and the only at 2 mm to search for dusty star-forming galaxies (DSFGs). We use the 13 sources detected above 5
σ
to estimate the first ALMA galaxy number counts at this wavelength. These number counts are then combined with the state-of-the-art galaxy number counts at 1.2 and 3 mm and with a backward evolution model to place constraints on the evolution of the IR luminosity function and dust-obscured star formation in the past 13 billion years. Our results suggest a steep redshift evolution on the space density of DSFGs and confirm the flattening of the IR luminosity function at faint luminosities, with a slope of
. We conclude that the dust-obscured component, which peaks at
z
≈ 2–2.5, has dominated the cosmic history of star formation for the past ∼12 billion years, back to
z
∼ 4. At
z
= 5, the dust-obscured star formation is estimated to be ∼35% of the total star formation rate density and decreases to 25%–20% at
z
= 6–7, implying a minor contribution of dust-enshrouded star formation in the first billion years of the universe. With the dust-obscured star formation history constrained up to the end of the epoch of reionization, our results provide a benchmark to test galaxy formation models, to study the galaxy mass assembly history, and to understand the dust and metal enrichment of the universe at early times. |
---|---|
Bibliography: | AAS27981 Galaxies and Cosmology ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0004-637X 1538-4357 1538-4357 |
DOI: | 10.3847/1538-4357/abdb27 |