Multilevel Multiobjective Particle Swarm Optimization Guided Superpixel Algorithm for Histopathology Image Detection and Segmentation

Histopathology image analysis is considered as a gold standard for the early diagnosis of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis (CAD) have led to the development of several algorithms for accurately segmenting histopathology images. However, the a...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 9; no. 4; p. 78
Main Authors Kanadath, Anusree, Angel Arul Jothi, J., Urolagin, Siddhaling
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.03.2023
MDPI
Subjects
Online AccessGet full text
ISSN2313-433X
2313-433X
DOI10.3390/jimaging9040078

Cover

More Information
Summary:Histopathology image analysis is considered as a gold standard for the early diagnosis of serious diseases such as cancer. The advancements in the field of computer-aided diagnosis (CAD) have led to the development of several algorithms for accurately segmenting histopathology images. However, the application of swarm intelligence for segmenting histopathology images is less explored. In this study, we introduce a Multilevel Multiobjective Particle Swarm Optimization guided Superpixel algorithm (MMPSO-S) for the effective detection and segmentation of various regions of interest (ROIs) from Hematoxylin and Eosin (H&E)-stained histopathology images. Several experiments are conducted on four different datasets such as TNBC, MoNuSeg, MoNuSAC, and LD to ascertain the performance of the proposed algorithm. For the TNBC dataset, the algorithm achieves a Jaccard coefficient of 0.49, a Dice coefficient of 0.65, and an F-measure of 0.65. For the MoNuSeg dataset, the algorithm achieves a Jaccard coefficient of 0.56, a Dice coefficient of 0.72, and an F-measure of 0.72. Finally, for the LD dataset, the algorithm achieves a precision of 0.96, a recall of 0.99, and an F-measure of 0.98. The comparative results demonstrate the superiority of the proposed method over the simple Particle Swarm Optimization (PSO) algorithm, its variants (Darwinian particle swarm optimization (DPSO), fractional order Darwinian particle swarm optimization (FODPSO)), Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), non-dominated sorting genetic algorithm 2 (NSGA2), and other state-of-the-art traditional image processing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2313-433X
2313-433X
DOI:10.3390/jimaging9040078