基于改进灰色Verhulst模型的受扰轨迹实时预测方法
提出了一种基于改进灰色Verhulst模型的受扰轨迹拟合外推预测方法。发电机角度的受扰轨迹在每一个摇摆过程中,呈现S形走势,与灰色Verhulst模型变化规律相符。采用无偏模型来消除灰色模型的自身误差,并通过采集最新的两个数据补偿误差,进一步提高预测精度。该方法易于实现,所需要量测数据少,计算简单,对于多摆过程中波峰与波谷的预测有很高的精度。应用该方法对IEEE39节点系统与中国南方电网实际系统的不同故障情形进行了仿真计算,结果表明,该方法具有好的预测效果。...
        Saved in:
      
    
          | Published in | 电力系统保护与控制 Vol. 40; no. 9; pp. 18 - 23 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            河海大学可再生能源发电技术教育部工程研究中心,江苏南京,210098%中国南方电网公司,广东广州,510623
    
        2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-3415 | 
| DOI | 10.3969/j.issn.1674-3415.2012.09.004 | 
Cover
| Summary: | 提出了一种基于改进灰色Verhulst模型的受扰轨迹拟合外推预测方法。发电机角度的受扰轨迹在每一个摇摆过程中,呈现S形走势,与灰色Verhulst模型变化规律相符。采用无偏模型来消除灰色模型的自身误差,并通过采集最新的两个数据补偿误差,进一步提高预测精度。该方法易于实现,所需要量测数据少,计算简单,对于多摆过程中波峰与波谷的预测有很高的精度。应用该方法对IEEE39节点系统与中国南方电网实际系统的不同故障情形进行了仿真计算,结果表明,该方法具有好的预测效果。 | 
|---|---|
| Bibliography: | This paper proposes a novel curve fitting extrapolation prediction method based on the improved grey Verhulst model for perturbed trajectory. The trend of angle during every swing is similar to S-shape curve. The grey Verhulst model is chosen to fit the variation of generator's rotor angle. For avoiding self-error in the model, the unbiased grey model is put forward. Two latest phasor measurements are used to predict the error to further improve the prediction accuracy, and it is easy to be realized and does not need big observation time window and computing is simple. In addition, it accurately predicts peaks and valleys in multi-swing case. Numerical simulations are conducted in IEEE 39-bus system and the China Southern Power Grid. The results show that the modified grey Verhulst model is reliable. post-fault rotor-angle trajectory prediction; gray Verhulst model; curve fitting (WAMS); phasor measurement unit (PMU); wide-area measurement system 41-1401/TM DENG Hui, ZHAO Jin-quan, LIU Yong-jun, WU Xiao-chen(1.  | 
| ISSN: | 1674-3415 | 
| DOI: | 10.3969/j.issn.1674-3415.2012.09.004 |