基于历史故障记录数据的电网连锁故障规模概率分布研究

连锁故障规模的概率分布描述了电网连锁故障的传播特点,是衡量电网发生大规模停电故障概率的有效方法之一。针对历史故障统计数据进行计算,是传统电力系统可靠性评估方法之一。将其与分支过程模型结合,用于区域电网的连锁故障分析。采用某区域电网14年历史故障数据为样本数据,针对多种概率模型进行比较分析,提出采用波雷-坦尔分支过程模型计算该区域电网连锁故障规模的概率分布,并采用误差分析研究了波雷-坦尔模型应用于实际电网风险管理的有效性和可能性。结果表明,波雷-坦尔模型能够很好地估计线路故障规模的概率分布。在相同置信度要求下,基于波雷-坦尔模型估计故障概率分布所需样本数据比直接根据实际故障数据计算所得概率分布所...

Full description

Saved in:
Bibliographic Details
Published in电力系统保护与控制 Vol. 42; no. 7; pp. 23 - 31
Main Author 任惠 熊吉 David Watts 陈曦
Format Journal Article
LanguageChinese
Published 华北电力大学电气与电子工程学院,河北 保定,071003%Pontificia Universidad Catolica de Chile,PUC,Vicuna Mackena 4860,Macul,Santiago,Chile%西安理工大学水电学院,陕西 西安,710048 2014
Subjects
Online AccessGet full text
ISSN1674-3415

Cover

More Information
Summary:连锁故障规模的概率分布描述了电网连锁故障的传播特点,是衡量电网发生大规模停电故障概率的有效方法之一。针对历史故障统计数据进行计算,是传统电力系统可靠性评估方法之一。将其与分支过程模型结合,用于区域电网的连锁故障分析。采用某区域电网14年历史故障数据为样本数据,针对多种概率模型进行比较分析,提出采用波雷-坦尔分支过程模型计算该区域电网连锁故障规模的概率分布,并采用误差分析研究了波雷-坦尔模型应用于实际电网风险管理的有效性和可能性。结果表明,波雷-坦尔模型能够很好地估计线路故障规模的概率分布。在相同置信度要求下,基于波雷-坦尔模型估计故障概率分布所需样本数据比直接根据实际故障数据计算所得概率分布所需样本数据降低一个数量级。
Bibliography:The probabilistic distribution of cascading outages is one of the main measures to describe the propagation of cascading outages, and to evaluate the risk of the large scale outages of the power system. Historical outage data has always been used for power system reliability evaluation, and by combined with the branching process model, it is used for cascading outage analysis for a regional power grid. Based on the 14-year utility historical outage data from a regional power grid in China, several known probabilistic models are tested and compared, and a Borel-Tanner branching process model is proposed to estimate the probabilities of cascading line outages. Statistical error analysis is performed to study the effectiveness of applying the Borel-Tarmer model to practical grid risk management. Results indicate that the empirical distribution of the total number of line outages is approximated well by the Borel-Tanner model. For the same confidential level, the estimation of the probability distribution of the
ISSN:1674-3415