Weakly-supervised convolutional neural networks for multimodal image registration

•A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate images.•Validation experiments with 108 pairs of labelled interventional patient images.•Open-source implementation. One of the fundamental cha...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 49; pp. 1 - 13
Main Authors Hu, Yipeng, Modat, Marc, Gibson, Eli, Li, Wenqi, Ghavami, Nooshin, Bonmati, Ester, Wang, Guotai, Bandula, Steven, Moore, Caroline M., Emberton, Mark, Ourselin, Sébastien, Noble, J. Alison, Barratt, Dean C., Vercauteren, Tom
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2018.07.002

Cover

Abstract •A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate images.•Validation experiments with 108 pairs of labelled interventional patient images.•Open-source implementation. One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels. [Display omitted]
AbstractList One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
•A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate images.•Validation experiments with 108 pairs of labelled interventional patient images.•Open-source implementation. One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels. [Display omitted]
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
Author Bonmati, Ester
Barratt, Dean C.
Vercauteren, Tom
Ourselin, Sébastien
Noble, J. Alison
Bandula, Steven
Modat, Marc
Ghavami, Nooshin
Moore, Caroline M.
Li, Wenqi
Wang, Guotai
Gibson, Eli
Hu, Yipeng
Emberton, Mark
AuthorAffiliation a Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
c Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
e Division of Surgery and Interventional Science, University College London, London, UK
d Centre for Medical Imaging, University College London, London, UK
b Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
AuthorAffiliation_xml – name: e Division of Surgery and Interventional Science, University College London, London, UK
– name: d Centre for Medical Imaging, University College London, London, UK
– name: a Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– name: b Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
– name: c Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
Author_xml – sequence: 1
  givenname: Yipeng
  orcidid: 0000-0003-4902-0486
  surname: Hu
  fullname: Hu, Yipeng
  email: yipeng.hu@ucl.ac.uk
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 2
  givenname: Marc
  orcidid: 0000-0002-5277-8530
  surname: Modat
  fullname: Modat, Marc
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 3
  givenname: Eli
  orcidid: 0000-0001-9207-7280
  surname: Gibson
  fullname: Gibson, Eli
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 4
  givenname: Wenqi
  orcidid: 0000-0002-7432-7386
  surname: Li
  fullname: Li, Wenqi
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 5
  givenname: Nooshin
  surname: Ghavami
  fullname: Ghavami, Nooshin
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 6
  givenname: Ester
  surname: Bonmati
  fullname: Bonmati, Ester
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 7
  givenname: Guotai
  orcidid: 0000-0002-8632-158X
  surname: Wang
  fullname: Wang, Guotai
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 8
  givenname: Steven
  surname: Bandula
  fullname: Bandula, Steven
  organization: Centre for Medical Imaging, University College London, London, UK
– sequence: 9
  givenname: Caroline M.
  surname: Moore
  fullname: Moore, Caroline M.
  organization: Division of Surgery and Interventional Science, University College London, London, UK
– sequence: 10
  givenname: Mark
  orcidid: 0000-0003-4230-0338
  surname: Emberton
  fullname: Emberton, Mark
  organization: Division of Surgery and Interventional Science, University College London, London, UK
– sequence: 11
  givenname: Sébastien
  surname: Ourselin
  fullname: Ourselin, Sébastien
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 12
  givenname: J. Alison
  orcidid: 0000-0002-3060-3772
  surname: Noble
  fullname: Noble, J. Alison
  organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
– sequence: 13
  givenname: Dean C.
  surname: Barratt
  fullname: Barratt, Dean C.
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
– sequence: 14
  givenname: Tom
  orcidid: 0000-0003-1794-0456
  surname: Vercauteren
  fullname: Vercauteren, Tom
  organization: Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30007253$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7If-AkEGvPFmpvmYJDsXClKsCgUpKF6GmeRkzTaTrMnMSv99s7t1sb2wV-eQPO_hPec9RUchBkDoNcENwUScr5oRjOsbismiwbLBmD5DJ4QJUi9ayo4OPeHH6DTnFcZYti1-gY7ZtqWcnaDrn9Df-Ns6z2tIG5fBVDqGTfTz5GLofRVgTrsy_YnpJlc2pmqc_eTGaMq7G_slVAmWLk-p32peoue29xle3dcz9OPy0_eLL_XVt89fLz5e1ZpzNtVDyyVdEGG1NUwazsVgqAUruell17ZgtJDdIKwgZOgoaN5xawljQgtgA2dn6MN-7noeyiE0hGLAq3UqltKtir1TD3-C-6WWcaOEbCknuAx4dz8gxd8z5EmNLmvwvg8Q56wolphyzFtZ0LeP0FWcUzlPoQgVvGxERaHe_OvoYOXvtQvA9oBOMecE9oAQrLaZqpXaZaq2mSosVcm0qLpHKu2m3anLWs4_oX2_10JJYuMgqawdBF3ABHpSJrr_6u8A6XC_7w
CitedBy_id crossref_primary_10_1016_j_compeleceng_2020_106767
crossref_primary_10_1016_j_media_2021_102139
crossref_primary_10_1088_1361_6560_ad67a6
crossref_primary_10_1016_j_media_2023_102935
crossref_primary_10_1186_s41747_019_0120_7
crossref_primary_10_1016_j_urolonc_2022_12_002
crossref_primary_10_1088_1361_6560_ad4e01
crossref_primary_10_1117_1_JMI_7_3_031503
crossref_primary_10_1109_TMI_2024_3400899
crossref_primary_10_1109_TBME_2022_3173182
crossref_primary_10_1080_17434440_2025_2477601
crossref_primary_10_1088_1361_6560_adaacd
crossref_primary_10_1007_s00521_021_06243_9
crossref_primary_10_1117_1_JMI_6_4_044008
crossref_primary_10_1109_ACCESS_2019_2957233
crossref_primary_10_1016_j_media_2019_101545
crossref_primary_10_1007_s11517_020_02265_y
crossref_primary_10_1016_j_jenvman_2021_113344
crossref_primary_10_1109_JBHI_2021_3095409
crossref_primary_10_1016_j_cpet_2021_06_001
crossref_primary_10_1109_TIP_2021_3130533
crossref_primary_10_1155_2020_8279342
crossref_primary_10_1016_j_inffus_2021_02_012
crossref_primary_10_2139_ssrn_4071358
crossref_primary_10_1016_j_compbiomed_2024_108673
crossref_primary_10_1117_1_JMI_6_3_035003
crossref_primary_10_1016_j_jdent_2024_105443
crossref_primary_10_1615_CritRevBiomedEng_2023050566
crossref_primary_10_1002_mp_17235
crossref_primary_10_1016_j_inffus_2023_102061
crossref_primary_10_1016_j_neucom_2021_08_097
crossref_primary_10_1155_2020_2684851
crossref_primary_10_3389_fphy_2020_00047
crossref_primary_10_1007_s10489_022_03659_1
crossref_primary_10_1109_TMI_2022_3164088
crossref_primary_10_1088_1361_6560_accdb1
crossref_primary_10_1109_ACCESS_2019_2938858
crossref_primary_10_1109_TMI_2019_2897538
crossref_primary_10_1007_s00530_021_00884_5
crossref_primary_10_1016_j_neucom_2020_04_122
crossref_primary_10_3390_s22031107
crossref_primary_10_3390_brainsci12121601
crossref_primary_10_1007_s12204_021_2383_4
crossref_primary_10_1109_TPAMI_2022_3225418
crossref_primary_10_1002_mp_16291
crossref_primary_10_3389_fonc_2022_1047215
crossref_primary_10_1016_j_bspc_2022_104294
crossref_primary_10_23736_S1824_4785_19_03213_8
crossref_primary_10_1109_TMI_2022_3187873
crossref_primary_10_1177_17562872221128791
crossref_primary_10_1109_TMI_2020_2972616
crossref_primary_10_1016_j_ejrad_2023_110887
crossref_primary_10_32604_csse_2021_014578
crossref_primary_10_1007_s00521_023_08454_8
crossref_primary_10_1016_j_media_2021_102231
crossref_primary_10_1038_s41598_021_86848_1
crossref_primary_10_1007_s11684_020_0770_0
crossref_primary_10_1109_ACCESS_2021_3120306
crossref_primary_10_1016_j_zemedi_2023_05_003
crossref_primary_10_1016_j_xops_2024_100664
crossref_primary_10_1038_s41598_022_20589_7
crossref_primary_10_1088_1361_6560_ad0d8a
crossref_primary_10_1016_j_mri_2019_05_037
crossref_primary_10_1016_j_neucom_2021_04_042
crossref_primary_10_3389_fnbot_2020_559366
crossref_primary_10_1016_j_media_2023_102962
crossref_primary_10_1109_TMI_2022_3218147
crossref_primary_10_1016_j_media_2023_102840
crossref_primary_10_1007_s11548_021_02359_4
crossref_primary_10_1109_TMI_2019_2953788
crossref_primary_10_1038_s41585_019_0193_3
crossref_primary_10_3389_fmed_2023_1114571
crossref_primary_10_1016_j_media_2022_102612
crossref_primary_10_1016_j_patrec_2021_09_011
crossref_primary_10_1109_TIP_2022_3201476
crossref_primary_10_1016_j_bspc_2023_104594
crossref_primary_10_1016_j_cmpb_2021_106374
crossref_primary_10_1109_JBHI_2020_3016699
crossref_primary_10_1117_1_JEI_33_5_053055
crossref_primary_10_1109_TMRB_2023_3265708
crossref_primary_10_3390_diagnostics12061489
crossref_primary_10_3390_electronics12010097
crossref_primary_10_1016_j_neuroimage_2023_120303
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_1007_s13534_024_00428_6
crossref_primary_10_1016_j_neuroimage_2019_116324
crossref_primary_10_3389_fphys_2022_1021400
crossref_primary_10_1016_j_media_2020_101878
crossref_primary_10_1007_s11548_019_02089_8
crossref_primary_10_1002_mp_15011
crossref_primary_10_1109_TNNLS_2020_2995319
crossref_primary_10_21105_joss_02705
crossref_primary_10_1016_j_media_2020_101638
crossref_primary_10_1007_s00261_024_04423_4
crossref_primary_10_1002_mp_13994
crossref_primary_10_1016_j_cmpb_2021_106261
crossref_primary_10_1016_j_cmpb_2024_108578
crossref_primary_10_1109_TRPMS_2021_3107454
crossref_primary_10_1007_s11340_021_00758_x
crossref_primary_10_1016_j_neuroimage_2025_121104
crossref_primary_10_3390_diagnostics12020289
crossref_primary_10_1007_s10278_024_01244_1
crossref_primary_10_1016_j_brachy_2022_11_011
crossref_primary_10_1007_s10489_024_05585_w
crossref_primary_10_1109_TMI_2021_3137280
crossref_primary_10_1007_s11548_018_1888_2
crossref_primary_10_1016_j_ijmedinf_2023_105279
crossref_primary_10_1109_TMI_2020_3007520
crossref_primary_10_1016_j_compmedimag_2020_101769
crossref_primary_10_1016_j_compmedimag_2023_102260
crossref_primary_10_1109_LSP_2024_3388954
crossref_primary_10_1002_mp_14065
crossref_primary_10_3389_fnins_2020_620235
crossref_primary_10_1002_mp_17696
crossref_primary_10_1016_j_bspc_2022_103965
crossref_primary_10_1016_j_compmedimag_2021_101931
crossref_primary_10_1016_j_compbiomed_2023_107434
crossref_primary_10_1109_RBME_2022_3183852
crossref_primary_10_1016_j_media_2020_101845
crossref_primary_10_1016_j_bspc_2024_106172
crossref_primary_10_1016_j_cmpb_2022_107025
crossref_primary_10_1109_TMI_2022_3141013
crossref_primary_10_1364_BOE_393178
crossref_primary_10_3390_s23063208
crossref_primary_10_1016_j_media_2019_07_006
crossref_primary_10_1016_j_mri_2023_01_013
crossref_primary_10_1016_j_compbiomed_2022_105780
crossref_primary_10_1016_j_imu_2024_101540
crossref_primary_10_1080_19479832_2019_1707720
crossref_primary_10_1007_s43154_020_00042_1
crossref_primary_10_1088_1361_6560_ad7fc7
crossref_primary_10_1038_s41598_023_40133_5
crossref_primary_10_1109_ACCESS_2025_3530242
crossref_primary_10_3390_rs16162880
crossref_primary_10_1007_s11548_024_03084_4
crossref_primary_10_1002_ima_22801
crossref_primary_10_1016_j_neunet_2022_04_011
crossref_primary_10_1088_1361_6560_ac72ef
crossref_primary_10_1109_TMI_2021_3128408
crossref_primary_10_1088_1361_6560_ad4c4f
crossref_primary_10_1016_j_media_2023_102786
crossref_primary_10_1080_09500340_2021_1939897
crossref_primary_10_1007_s10334_019_00782_y
crossref_primary_10_2139_ssrn_4094742
crossref_primary_10_1016_j_neunet_2020_01_023
crossref_primary_10_1109_ACCESS_2020_3047829
crossref_primary_10_1109_TPAMI_2023_3289667
crossref_primary_10_1016_j_media_2020_101822
crossref_primary_10_1016_j_bspc_2024_107007
crossref_primary_10_3390_app10031171
crossref_primary_10_1109_TMI_2023_3244333
crossref_primary_10_1080_10255842_2024_2372637
crossref_primary_10_3390_jmse11040793
crossref_primary_10_1007_s11548_019_02068_z
crossref_primary_10_3389_fcvm_2021_785523
crossref_primary_10_1016_j_media_2020_101817
crossref_primary_10_1186_s42492_024_00173_8
crossref_primary_10_1109_TASE_2021_3087868
crossref_primary_10_1016_j_patcog_2024_111338
crossref_primary_10_1016_j_techfore_2021_120745
crossref_primary_10_1088_1361_6560_ac195e
crossref_primary_10_1016_j_compbiomed_2022_105799
crossref_primary_10_3389_fradi_2023_1153784
crossref_primary_10_1088_1361_6560_ab843e
crossref_primary_10_1016_j_cag_2020_07_012
crossref_primary_10_3390_s21217112
crossref_primary_10_1109_TMI_2019_2897112
crossref_primary_10_1016_j_neuroimage_2022_119444
crossref_primary_10_1002_mp_15420
crossref_primary_10_1109_TMI_2021_3116879
crossref_primary_10_1016_j_ultrasmedbio_2024_10_016
crossref_primary_10_1200_EDBK_320951
crossref_primary_10_1245_s10434_024_15896_4
crossref_primary_10_1049_iet_ipr_2019_0032
crossref_primary_10_1109_JPROC_2019_2932116
crossref_primary_10_1016_j_compbiomed_2025_109719
crossref_primary_10_1016_j_ejrh_2024_102064
crossref_primary_10_1016_j_media_2021_102292
crossref_primary_10_1002_mrm_27852
crossref_primary_10_1109_JSEN_2024_3402539
crossref_primary_10_1109_JPROC_2019_2946993
crossref_primary_10_1002_ett_4017
crossref_primary_10_1109_TMI_2022_3158065
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1109_JBHI_2022_3149114
crossref_primary_10_1007_s13246_024_01408_x
crossref_primary_10_1016_j_compmedimag_2023_102322
crossref_primary_10_1088_1361_6560_ab8cd6
crossref_primary_10_1016_j_sigpro_2025_109924
crossref_primary_10_1371_journal_pone_0282110
crossref_primary_10_1109_JBHI_2023_3337942
crossref_primary_10_1016_j_compmedimag_2022_102140
crossref_primary_10_1007_s11548_024_03258_0
crossref_primary_10_1016_j_autcon_2023_105213
crossref_primary_10_1016_j_phro_2023_100498
crossref_primary_10_1109_JBHI_2024_3350166
crossref_primary_10_1016_j_compmedimag_2023_102204
crossref_primary_10_1016_j_media_2022_102444
crossref_primary_10_1016_j_media_2023_103038
crossref_primary_10_1109_ACCESS_2025_3535219
crossref_primary_10_3390_diagnostics11020354
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1016_j_media_2018_11_010
crossref_primary_10_1007_s11517_022_02673_2
crossref_primary_10_1109_TMI_2022_3170879
crossref_primary_10_3390_s21010220
crossref_primary_10_1002_mp_14901
crossref_primary_10_1016_j_compbiomed_2023_106612
crossref_primary_10_1088_1361_6560_ac176a
crossref_primary_10_1002_acm2_14177
crossref_primary_10_1038_s41598_023_33781_0
crossref_primary_10_1007_s00371_022_02435_z
crossref_primary_10_1364_BOE_458182
crossref_primary_10_1016_j_jnlest_2023_100205
crossref_primary_10_1016_j_bspc_2025_107597
crossref_primary_10_32604_csse_2022_020810
crossref_primary_10_3390_app132413298
crossref_primary_10_1109_TMI_2021_3139507
crossref_primary_10_1007_s00138_020_01060_x
crossref_primary_10_1177_00033197231187063
crossref_primary_10_1109_TMI_2023_3288046
crossref_primary_10_3390_bioengineering9080369
crossref_primary_10_1016_j_ultrasmedbio_2024_10_005
crossref_primary_10_3390_bioengineering10050562
crossref_primary_10_1088_1361_6560_acb197
crossref_primary_10_1109_TMI_2022_3168786
crossref_primary_10_1016_j_bspc_2023_104958
crossref_primary_10_2478_acss_2020_0005
crossref_primary_10_1016_j_media_2021_102041
crossref_primary_10_3390_e22060687
crossref_primary_10_1016_j_compbiomed_2023_107150
crossref_primary_10_1016_j_media_2024_103351
Cites_doi 10.1109/5.726791
10.1148/radiol.2482082516
10.1109/IROS.2017.8206462
10.1109/TMI.2016.2521800
10.1007/978-3-642-35289-8_19
10.1016/j.juro.2013.12.007
10.1609/aaai.v31i1.11230
10.1109/TMI.2016.2610583
10.1007/978-3-319-67558-9_24
10.1117/12.2007580
10.1001/jama.2014.17942
10.1007/978-3-319-66182-7_83
10.1007/s00330-015-4015-6
10.1016/j.eururo.2014.10.026
10.1109/TPAMI.2013.50
10.1016/j.media.2016.06.030
10.1016/j.cmpb.2018.01.025
10.1109/CVPR.2016.308
10.1016/j.media.2015.10.006
10.1016/j.juro.2011.05.078
10.1109/42.796284
10.1088/0031-9155/46/3/201
10.1109/TIP.2009.2025006
10.1016/j.cmpb.2009.09.002
10.5244/C.31.10
10.1109/TMI.2011.2158235
10.1109/TMI.2015.2485299
10.1007/978-3-319-66182-7_35
10.1117/12.2293300
10.1016/j.juro.2017.02.1016
10.1016/j.eururo.2010.12.009
10.1016/j.media.2016.06.015
10.1109/TMI.2018.2791721
10.1109/CVPR.2017.179
10.1109/TMI.2017.2703150
10.1016/j.neuroimage.2017.07.008
10.1097/RLI.0000000000000115
10.1109/TBME.2016.2582734
10.1109/CVPR.2017.243
10.2967/jnumed.114.141705
10.1016/j.media.2010.11.003
10.1109/TMI.2014.2375207
10.1109/TMI.2015.2443978
10.1016/j.media.2017.05.001
10.1118/1.4917481
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright Elsevier BV Oct 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Oct 2018
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1016/j.media.2018.07.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 13
ExternalDocumentID PMC6742510
30007253
10_1016_j_media_2018_07_002
S1361841518301051
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: WT101957
– fundername: Cancer Research UK
  grantid: C28070/A19985
– fundername: Wellcome Trust
  grantid: 203145Z/16/Z
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c553t-b4572816fcfd37d556bd2fef75da7944edc679b6f611b92ec595ff1336c6e3b53
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Thu Aug 21 14:12:49 EDT 2025
Fri Sep 05 14:39:36 EDT 2025
Wed Aug 13 09:48:40 EDT 2025
Wed Feb 19 02:35:43 EST 2025
Tue Jul 01 02:49:27 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Fri Feb 23 02:28:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image-guided intervention
Weakly-supervised learning
Prostate cancer
Convolutional neural network
Medical image registration
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c553t-b4572816fcfd37d556bd2fef75da7944edc679b6f611b92ec595ff1336c6e3b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1794-0456
0000-0001-9207-7280
0000-0003-4902-0486
0000-0002-8632-158X
0000-0002-7432-7386
0000-0003-4230-0338
0000-0002-5277-8530
0000-0002-3060-3772
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1361841518301051
PMID 30007253
PQID 2126555326
PQPubID 2045428
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6742510
proquest_miscellaneous_2070250547
proquest_journals_2126555326
pubmed_primary_30007253
crossref_primary_10_1016_j_media_2018_07_002
crossref_citationtrail_10_1016_j_media_2018_07_002
elsevier_sciencedirect_doi_10_1016_j_media_2018_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hu, Kasivisvanathan, Simmons, Clarkson, Thompson, Shah, Ahmed, Punwani, Hawkes, Emberton, Moore, Barratt (bib0025) 2017; 64
Sun, Yuan, Qiu, Rajchl, Romagnoli, Fenster (bib0057) 2015
Dosovitskiy, Fischery, Ilg, Hausser, Hazirbas, Golkov, Smagt, Cremers, Brox (bib0008) 2015
Wilson, Kurhanewicz (bib0069) 2014; 55
Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J., Barratt, D.C., 2017a. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Miao, Wang, Liao (bib0038) 2016; 35
Khallaghi, Sanchez, Rasoulian, Nouranian, Romagnoli, Abdi, Chang, Black, Goldenberg, Morris, Spadinger, Fenster, Ward, Fels, Abolmaesumi (bib0030) 2015; 34
Wu, Kim, Wang, Gao, Liao, Shen (bib0071) 2013; 16
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T., 2017. FlowNet 2.0: evolution of optical flow estimation with deep networks. CVPR.
LeCun, Bengio, Hinton (bib0034) 2015
Ronneberger, Fischer, Brox (bib0047) 2015; 2015
(bib0053) 2015
van de Ven, W.J.M., Hu, Y., Barentsz, J.O., Karssemeijer, N., Barratt, D., Huisman, H.J., 2013. Surface-based prostate registration with biomechanical regularization, in: SPIE Medical Imaging. p. 86711R–86711R.
Yu, Yang, Chen, Qin, Heng (bib0074) 2017
Siddiqui, Rais-Bahrami, Turkbey, George, Rothwax, Shakir, Okoro, Raskolnikov, Parnes, Linehan, Merino, Simon, Choyke, Wood, Pinto (bib0051) 2015; 313
van de Ven, Hu, Barentsz, Karssemeijer, Barratt, Huisman (bib0061) 2015; 42
Modat, Ridgway, Taylor, Lehmann, Barnes, Hawkes, Fox, Ourselin (bib0040) 2010; 98
Viergever, Maintz, Klein, Murphy, Staring, Pluim (bib0064) 2016; 33
Goodfellow, Bengio, Courville (bib0018) 2016
Noble (bib0041) 2016; 33
Wang, Cheng, Ni, Lin, Qin, Luo, Xu, Xie, Heng (bib0067) 2016; 35
.
Hu, Modat, Gibson, Ghavami, Bonmati, Moore, Emberton, Noble, Barratt, Vercauteren (bib0026) 2018; 2018
Jaderberg (bib0029) 2015
Simonovsky, Gutiérrez-Becker, Mateus, Navab, Komodakis (bib0052) 2016
Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L., 2012. Neural network classification and prior class probabilities. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU, 295–309.
Panagiotaki, Chan, Dikaios, Ahmed, O'Callaghan, Freeman, Atkinson, Punwani, Hawkes, Alexander (bib0042) 2015; 50
Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, S., Vercauteren, T., 2017. Interactive medical image segmentation using deep learning with image-specific fine-tuning. arXiv Prepr.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., others, 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv Prepr.
Pinto, Chung, Rastinehad, Baccala, Kruecker, Benjamin, Xu, Yan, Kadoury, Chua, Locklin, Turkbey, Shih, Gates, Buckner, Bratslavsky, Linehan, Glossop, Choyke, Wood (bib0044) 2011; 186
Yu, Harley, Derpanis (bib0073) 2016
Bengio, Courville, Vincent (bib0002) 2013; 35
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0058) 2015
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826.
LeCun, Bottou, Bengio, Haffner (bib0035) 1998; 86
Elkan (bib0010) 2001
Hill, Batchelor, Holden, Hawkes (bib0020) 2001; 46
Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L., 2016. Densely connected convolutional networks. arXiv Prepr.
Glorot, Bengio (bib0017) 2010; 9
Liao, R., Miao, S., de Tournemire, P., Grbic, S., Kamen, A., Mansi, T., Comaniciu, D., 2017. An Artificial Agent for Robust Image Registration., in: AAAI. pp. 4168–4175.
Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (bib0048) 1999; 18
Zöllei, Fisher, Wells (bib0075) 2003; 18
Wang, Ni, Qin, Xu, Xie, Heng (bib0068) 2016; 6
Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., others, 2017b. NiftyNet: a deep-learning platform for medical imaging. arXiv Prepr.
Schnabel, Rueckert, Quist, Blackall, Castellano-Smith, Hartkens, Penney, Hall, Liu, Truwit, Gerritsen, Hill, Hawkes (bib0049) 2001
Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G., 2017. Regularizing neural networks by penalizing confident output distributions. arXiv Prepr.
Dou, Yu, Chen, Jin, Yang, Qin, Heng (bib0009) 2017; 41
Ghavami, N., Hu, Y., Bonmati, E., Rodell, R., Gibson, E., Moore, C.M., Barratt, D.C., 2018. Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks, in: SPIE medical imaging.
Hu, Ahmed, Taylor, Allen, Emberton, Hawkes, Barratt (bib0022) 2012; 16
Sokooti, de Vos, Berendsen, Lelieveldt, Išgum, Staring (bib0055) 2017
Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., 2015. Deeply-supervised nets, in: Artificial Intelligence and Statistics. pp. 562–570.
Rohé, Datar, Heimann, Sermesant, Pennec (bib0046) 2017
Garcia-Peraza-Herrera, L.C., Li, W., Fidon, L., Gruijthuijsen, C., Devreker, A., Attilakos, G., Deprest, J., Poorten, E. Vander, Stoyanov, D., Vercauteren, T., others, 2017. Toolnet: holistically-nested real-time segmentation of robotic surgical tools. arXiv Prepr.
Valerio, Donaldson, Emberton, Ehdaie, Hadaschik, Marks, Mozer, Rastinehad, Ahmed (bib0060) 2015; 68
Wojna, Z., Ferrari, V., Guadarrama, S., Silberman, N., Chen, L.-C., Fathi, A., Uijlings, J., 2017. The Devil is in the Decoder. arXiv Prepr.
Vargas, Hötker, Goldman, Moskowitz, Gondo, Matsumoto, Ehdaie, Woo, Fine, Reuter, Sala, Hricak (bib0063) 2016; 26
Kumar, Dass (bib0032) 2009; 18
Hu, Carter, Ahmed, Emberton, Allen, Hawkes, Barratt (bib0023) 2011; 30
Hu, Y., 2013. Registration of magnetic resonance and ultrasound images for guiding prostate cancer interventions. UCL (University College London).
Sudre, Li, Vercauteren, Ourselin, Jorge Cardoso (bib0056) 2017
Cao, X., Yang, J., Zhang, J., Nie, D., Kim, M., Wang, Q., Shen, D., 2017. Deformable image registration based on similarity-steered CNN regression, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 300–308.
de Vos, Berendsen, Viergever, Staring, Išgum (bib0005) 2017; 10553
(bib0054) 2014
Donaldson, Hamid, Barratt, Hu, Rodell, Villarini, Bonmati, Martin, Hawkes, McCartan (bib0007) 2017; 197
Krebs, Mansi, Delingette, Zhang, Ghesu, Miao, Maier, Ayache, Liao, Kamen (bib0031) 2017
He, Zhang, Ren, Sun (bib0019) 2016
Dickinson, Ahmed, Allen, Barentsz, Carey, Futterer, Heijmink, Hoskin, Kirkham, Padhani, Persad, Puech, Punwani, Sohaib, Tombal, Villers, Van Der Meulen, Emberton (bib0006) 2011; 59
Rastinehad, Turkbey, Salami, Yaskiv, George, Fakhoury, Beecher, Vira, Kavoussi, Siegel, Villani, Ben-Levi (bib0045) 2014; 191
De Silva, Cool, Yuan, Romagnoli, Samarabandu, Fenster, Ward (bib0004) 2017; 36
Milletari, Navab, Ahmadi (bib0039) 2016
Shi, Zhuang, Pizarro, Bai, Wang, Tung, Edwards, Rueckert (bib0050) 2012; 15
Hu, Gibson, Ahmed, Moore, Emberton, Barratt (bib0024) 2015; 26
Vishnevskiy, Gass, Szekely, Tanner, Goksel (bib0065) 2017; 36
Fischer, Modersitzki (bib0012) 2004
Halpern (bib0011) 2008; 248
Yang, Kwitt, Styner, Niethammer (bib0072) 2017; 158
Bengio (10.1016/j.media.2018.07.002_bib0002) 2013; 35
10.1016/j.media.2018.07.002_bib0037
10.1016/j.media.2018.07.002_bib0036
Yu (10.1016/j.media.2018.07.002_bib0074) 2017
Krebs (10.1016/j.media.2018.07.002_bib0031) 2017
Halpern (10.1016/j.media.2018.07.002_bib0011) 2008; 248
10.1016/j.media.2018.07.002_bib0033
Dosovitskiy (10.1016/j.media.2018.07.002_bib0008) 2015
Rastinehad (10.1016/j.media.2018.07.002_bib0045) 2014; 191
de Vos (10.1016/j.media.2018.07.002_bib0005) 2017; 10553
Wilson (10.1016/j.media.2018.07.002_bib0069) 2014; 55
Elkan (10.1016/j.media.2018.07.002_bib0010)
Zöllei (10.1016/j.media.2018.07.002_bib0075) 2003; 18
Kumar (10.1016/j.media.2018.07.002_bib0032) 2009; 18
He (10.1016/j.media.2018.07.002_sbref0013) 2016
Rohé (10.1016/j.media.2018.07.002_bib0046) 2017
Vargas (10.1016/j.media.2018.07.002_bib0063) 2016; 26
Hill (10.1016/j.media.2018.07.002_bib0020) 2001; 46
Khallaghi (10.1016/j.media.2018.07.002_bib0030) 2015; 34
Rueckert (10.1016/j.media.2018.07.002_bib0048) 1999; 18
Hu (10.1016/j.media.2018.07.002_bib0023) 2011; 30
10.1016/j.media.2018.07.002_bib0028
10.1016/j.media.2018.07.002_bib0027
Dou (10.1016/j.media.2018.07.002_bib0009) 2017; 41
Valerio (10.1016/j.media.2018.07.002_bib0060) 2015; 68
Glorot (10.1016/j.media.2018.07.002_bib0017) 2010; 9
10.1016/j.media.2018.07.002_bib0066
10.1016/j.media.2018.07.002_bib0021
Szegedy (10.1016/j.media.2018.07.002_bib0058) 2015
10.1016/j.media.2018.07.002_bib0062
Wang (10.1016/j.media.2018.07.002_bib0068) 2016; 6
10.1016/j.media.2018.07.002_bib0070
Shi (10.1016/j.media.2018.07.002_bib0050) 2012; 15
Hu (10.1016/j.media.2018.07.002_bib0025) 2017; 64
Wu (10.1016/j.media.2018.07.002_bib0071) 2013; 16
Ronneberger (10.1016/j.media.2018.07.002_bib0047) 2015; 2015
Sun (10.1016/j.media.2018.07.002_bib0057) 2015
10.1016/j.media.2018.07.002_bib0016
Hu (10.1016/j.media.2018.07.002_bib0022) 2012; 16
10.1016/j.media.2018.07.002_bib0015
Goodfellow (10.1016/j.media.2018.07.002_bib0018) 2016
10.1016/j.media.2018.07.002_bib0059
10.1016/j.media.2018.07.002_bib0014
10.1016/j.media.2018.07.002_bib0013
(10.1016/j.media.2018.07.002_bib0054) 2014
Pinto (10.1016/j.media.2018.07.002_bib0044) 2011; 186
LeCun (10.1016/j.media.2018.07.002_bib0034) 2015
Panagiotaki (10.1016/j.media.2018.07.002_bib0042) 2015; 50
Milletari (10.1016/j.media.2018.07.002_bib0039) 2016
De Silva (10.1016/j.media.2018.07.002_bib0004) 2017; 36
Viergever (10.1016/j.media.2018.07.002_bib0064) 2016; 33
Hu (10.1016/j.media.2018.07.002_bib0026) 2018; 2018
Sokooti (10.1016/j.media.2018.07.002_bib0055) 2017
LeCun (10.1016/j.media.2018.07.002_bib0035) 1998; 86
Miao (10.1016/j.media.2018.07.002_bib0038) 2016; 35
(10.1016/j.media.2018.07.002_bib0053) 2015
Simonovsky (10.1016/j.media.2018.07.002_bib0052) 2016
10.1016/j.media.2018.07.002_bib0003
Dickinson (10.1016/j.media.2018.07.002_bib0006) 2011; 59
10.1016/j.media.2018.07.002_bib0001
Fischer (10.1016/j.media.2018.07.002_bib0012)
Modat (10.1016/j.media.2018.07.002_bib0040) 2010; 98
Siddiqui (10.1016/j.media.2018.07.002_bib0051) 2015; 313
Sudre (10.1016/j.media.2018.07.002_bib0056) 2017
Jaderberg (10.1016/j.media.2018.07.002_bib0029) 2015
10.1016/j.media.2018.07.002_bib0043
Yang (10.1016/j.media.2018.07.002_bib0072) 2017; 158
Donaldson (10.1016/j.media.2018.07.002_bib0007) 2017; 197
Yu (10.1016/j.media.2018.07.002_bib0073) 2016
Wang (10.1016/j.media.2018.07.002_bib0067) 2016; 35
Vishnevskiy (10.1016/j.media.2018.07.002_bib0065) 2017; 36
Schnabel (10.1016/j.media.2018.07.002_bib0049) 2001
van de Ven (10.1016/j.media.2018.07.002_bib0061) 2015; 42
Hu (10.1016/j.media.2018.07.002_bib0024) 2015; 26
Noble (10.1016/j.media.2018.07.002_bib0041) 2016; 33
References_xml – reference: Cao, X., Yang, J., Zhang, J., Nie, D., Kim, M., Wang, Q., Shen, D., 2017. Deformable image registration based on similarity-steered CNN regression, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 300–308.
– volume: 26
  start-page: 332
  year: 2015
  end-page: 344
  ident: bib0024
  article-title: Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration
  publication-title: Med. Image Anal.
– year: 2015
  ident: bib0053
– reference: Garcia-Peraza-Herrera, L.C., Li, W., Fidon, L., Gruijthuijsen, C., Devreker, A., Attilakos, G., Deprest, J., Poorten, E. Vander, Stoyanov, D., Vercauteren, T., others, 2017. Toolnet: holistically-nested real-time segmentation of robotic surgical tools. arXiv Prepr.
– reference: Ghavami, N., Hu, Y., Bonmati, E., Rodell, R., Gibson, E., Moore, C.M., Barratt, D.C., 2018. Automatic slice segmentation of intraoperative transrectal ultrasound images using convolutional neural networks, in: SPIE medical imaging.
– volume: 35
  start-page: 1352
  year: 2016
  end-page: 1363
  ident: bib0038
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
– reference: Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T., 2017. FlowNet 2.0: evolution of optical flow estimation with deep networks. CVPR.
– volume: 18
  start-page: 712
  year: 1999
  end-page: 721
  ident: bib0048
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 66
  year: 2017
  end-page: 72
  ident: bib0074
  article-title: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images
  publication-title: Thirty-First AAAI Conf. Artif. Intell
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0017
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: PMLR
– reference: Gibson, E., Giganti, F., Hu, Y., Bonmati, E., Bandula, S., Gurusamy, K., Davidson, B.R., Pereira, S.P., Clarkson, M.J., Barratt, D.C., 2017a. Towards image-guided pancreas and biliary endoscopy: Automatic multi-organ segmentation on abdominal CT with dense dilated networks, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
– volume: 2018
  year: 2018
  ident: bib0026
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
  publication-title: Biomed. Imaging (ISBI)
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0058
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– reference: Wojna, Z., Ferrari, V., Guadarrama, S., Silberman, N., Chen, L.-C., Fathi, A., Uijlings, J., 2017. The Devil is in the Decoder. arXiv Prepr.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2323
  ident: bib0035
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 18
  start-page: 366
  year: 2003
  end-page: 377
  ident: bib0075
  article-title: A unified statistical and information theoretic framework for multi-modal image registration
  publication-title: Inf. Process. Med. Imaging
– year: 2004
  ident: bib0012
  article-title: A unified approach to fast image registration and a new curvature based registration technique, in: Linear Algebra and its applications
– volume: 26
  start-page: 1606
  year: 2016
  end-page: 1612
  ident: bib0063
  article-title: Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference
  publication-title: Eur. Radiol.
– year: 2016
  ident: bib0073
  article-title: Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 158
  start-page: 378
  year: 2017
  end-page: 396
  ident: bib0072
  article-title: Quicksilver: fast predictive image registration – a deep learning approach
  publication-title: Neuroimage
– volume: 10553
  start-page: 204
  year: 2017
  end-page: 212
  ident: bib0005
  article-title: End-to-end unsupervised deformable image registration with a convolutional neural network. DLMIA 2017, ML-CDS 2017
  publication-title: Lect. Notes Comput. Sci
– year: 2015
  ident: bib0029
  article-title: Spatial Transformer Networks. arXiv
– volume: 16
  start-page: 687
  year: 2012
  end-page: 703
  ident: bib0022
  article-title: MR to ultrasound registration for image-guided prostate interventions
  publication-title: Med. Image Anal.
– volume: 18
  start-page: 2137
  year: 2009
  end-page: 2143
  ident: bib0032
  article-title: A total variation-based algorithm for pixel-level image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 64
  year: 2017
  ident: bib0025
  article-title: Development and phantom validation of a 3-D-ultrasound-guided system for targeting MRI-visible lesions during transrectal prostate biopsy
  publication-title: IEEE Trans. Biomed. Eng
– year: 2016
  ident: bib0052
  article-title: A deep metric for multimodal registration, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 33
  start-page: 140
  year: 2016
  end-page: 144
  ident: bib0064
  article-title: A survey of medical image registration
  publication-title: Med. Image Anal.
– volume: 46
  start-page: R1
  year: 2001
  end-page: R45
  ident: bib0020
  article-title: Medical image registration
  publication-title: Phys. Med. Biol.
– volume: 33
  start-page: 33
  year: 2016
  end-page: 37
  ident: bib0041
  article-title: Reflections on ultrasound image analysis
  publication-title: Med. Image Anal.
– volume: 98
  start-page: 278
  year: 2010
  end-page: 284
  ident: bib0040
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
– year: 2001
  ident: bib0049
  article-title: A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2014
  ident: bib0054
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826.
– reference: Hu, Y., 2013. Registration of magnetic resonance and ultrasound images for guiding prostate cancer interventions. UCL (University College London).
– volume: 197
  start-page: e425
  year: 2017
  ident: bib0007
  article-title: MP33-20 the smarttarget biopsy trial: a prospective paired blinded trial with randomisation to compare visual-estimation and image-fusion targeted prostate biopsies
  publication-title: J. Urol
– reference: Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, S., Vercauteren, T., 2017. Interactive medical image segmentation using deep learning with image-specific fine-tuning. arXiv Prepr.
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., others, 2016. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv Prepr.
– volume: 313
  start-page: 390
  year: 2015
  end-page: 397
  ident: bib0051
  article-title: Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer
  publication-title: Jama
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: bib0002
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., others, 2017b. NiftyNet: a deep-learning platform for medical imaging. arXiv Prepr.
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0039
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
  publication-title: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016
– volume: 2015
  start-page: 234
  year: 2015
  end-page: 241
  ident: bib0047
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Interv. MICCAI
– year: 2015
  ident: bib0057
  article-title: Three-dimensional nonrigid MR-TRUS registration using dual optimization
  publication-title: IEEE Trans. Med. Imaging.
– year: 2017
  ident: bib0056
  article-title: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– year: 2016
  ident: bib0019
  article-title: Deep Residual Learning for Image Recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 30
  start-page: 1887
  year: 2011
  end-page: 1900
  ident: bib0023
  article-title: Modelling prostate motion for data fusion during image-guided interventions
  publication-title: Med. Imaging
– reference: Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L., 2016. Densely connected convolutional networks. arXiv Prepr.
– reference: Liao, R., Miao, S., de Tournemire, P., Grbic, S., Kamen, A., Mansi, T., Comaniciu, D., 2017. An Artificial Agent for Robust Image Registration., in: AAAI. pp. 4168–4175.
– year: 2017
  ident: bib0031
  article-title: Robust non-rigid registration through agent-based action learning, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– reference: Lawrence, S., Burns, I., Back, A., Tsoi, A.C., Giles, C.L., 2012. Neural network classification and prior class probabilities. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 7700 LECTU, 295–309.
– volume: 16
  start-page: 649
  year: 2013
  end-page: 656
  ident: bib0071
  article-title: Unsupervised deep feature learning for deformable registration\nof MR brain images
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 186
  start-page: 1281
  year: 2011
  end-page: 1285
  ident: bib0044
  article-title: Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging
  publication-title: J. Urol.
– volume: 36
  start-page: 2010
  year: 2017
  end-page: 2020
  ident: bib0004
  article-title: Robust 2-D-3-D registration optimization for motion compensation during 3-D TRUS-guided biopsy using learned prostate motion data
  publication-title: IEEE Trans. Med. Imaging
– reference: Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z., 2015. Deeply-supervised nets, in: Artificial Intelligence and Statistics. pp. 562–570.
– volume: 15
  start-page: 659
  year: 2012
  end-page: 666
  ident: bib0050
  article-title: Registration using sparse free-form deformations
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 248
  start-page: 390
  year: 2008
  ident: bib0011
  article-title: Urogenital Ultrasound: A Text Atlas, 2nd ed
  publication-title: Radiology
– year: 2015
  ident: bib0034
  article-title: Deep learning. Nature
– volume: 50
  start-page: 218
  year: 2015
  end-page: 227
  ident: bib0042
  article-title: Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging
  publication-title: Invest. Radiol.
– volume: 191
  start-page: 1749
  year: 2014
  end-page: 1754
  ident: bib0045
  article-title: Improving detection of clinically significant prostate cancer: Magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy
  publication-title: J. Urol
– year: 2001
  ident: bib0010
  article-title: The foundations of cost-sensitive learning, in: IJCAI International Joint Conference on Artificial Intelligence
– reference: van de Ven, W.J.M., Hu, Y., Barentsz, J.O., Karssemeijer, N., Barratt, D., Huisman, H.J., 2013. Surface-based prostate registration with biomechanical regularization, in: SPIE Medical Imaging. p. 86711R–86711R.
– start-page: 2758
  year: 2015
  end-page: 2766
  ident: bib0008
  article-title: FlowNet: learning optical flow with convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 55
  start-page: 1567
  year: 2014
  end-page: 1572
  ident: bib0069
  article-title: Hyperpolarized 13C MR for molecular imaging of prostate cancer
  publication-title: J. Nucl. Med.
– year: 2017
  ident: bib0046
  article-title: SVF-Net: learning deformable image registration using shape matching, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– reference: .
– volume: 59
  start-page: 477
  year: 2011
  end-page: 494
  ident: bib0006
  article-title: Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting
  publication-title: Eur. Urol.
– volume: 35
  start-page: 589
  year: 2016
  end-page: 604
  ident: bib0067
  article-title: Towards personalized statistical deformable model and hybrid point matching for robust MR-TRUS registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 232
  year: 2017
  end-page: 239
  ident: bib0055
  article-title: Nonrigid Image Registration Using Multi-scale 3D Convolutional Neural Networks
  publication-title: Medical Image Computing and Computer Assisted Intervention − MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part I
– volume: 68
  start-page: 8
  year: 2015
  end-page: 19
  ident: bib0060
  article-title: Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review
  publication-title: Eur. Urol.
– start-page: 800
  year: 2016
  ident: bib0018
  article-title: Deep Learning–Book
– volume: 34
  start-page: 2535
  year: 2015
  end-page: 2549
  ident: bib0030
  article-title: Statistical biomechanical surface registration: application to MR-TRUS fusion for prostate interventions
  publication-title: IEEE Trans. Med. Imaging
– volume: 42
  start-page: 2470
  year: 2015
  end-page: 2481
  ident: bib0061
  article-title: Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy
  publication-title: Med. Phys.
– reference: Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G., 2017. Regularizing neural networks by penalizing confident output distributions. arXiv Prepr.
– volume: 41
  start-page: 40
  year: 2017
  end-page: 54
  ident: bib0009
  article-title: 3D deeply supervised network for automated segmentation of volumetric medical images
  publication-title: Med. Image Anal.
– volume: 36
  start-page: 385
  year: 2017
  end-page: 395
  ident: bib0065
  article-title: Isotropic total variation regularization of displacements in parametric image registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 6
  year: 2016
  ident: bib0068
  article-title: Patient-specific deformation modelling via elastography: application to image-guided prostate interventions
  publication-title: Sci. Rep
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.1016/j.media.2018.07.002_bib0035
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 248
  start-page: 390
  year: 2008
  ident: 10.1016/j.media.2018.07.002_bib0011
  article-title: Urogenital Ultrasound: A Text Atlas, 2nd ed
  publication-title: Radiology
  doi: 10.1148/radiol.2482082516
– ident: 10.1016/j.media.2018.07.002_bib0013
  doi: 10.1109/IROS.2017.8206462
– volume: 35
  start-page: 1352
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0038
  article-title: A CNN regression approach for real-time 2D/3D registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2521800
– volume: 15
  start-page: 659
  year: 2012
  ident: 10.1016/j.media.2018.07.002_bib0050
  article-title: Registration using sparse free-form deformations
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– ident: 10.1016/j.media.2018.07.002_bib0033
  doi: 10.1007/978-3-642-35289-8_19
– volume: 191
  start-page: 1749
  year: 2014
  ident: 10.1016/j.media.2018.07.002_bib0045
  article-title: Improving detection of clinically significant prostate cancer: Magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy
  publication-title: J. Urol
  doi: 10.1016/j.juro.2013.12.007
– volume: 18
  start-page: 366
  year: 2003
  ident: 10.1016/j.media.2018.07.002_bib0075
  article-title: A unified statistical and information theoretic framework for multi-modal image registration
  publication-title: Inf. Process. Med. Imaging
– ident: 10.1016/j.media.2018.07.002_bib0001
– start-page: 66
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0074
  article-title: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images
  publication-title: Thirty-First AAAI Conf. Artif. Intell
– ident: 10.1016/j.media.2018.07.002_bib0037
  doi: 10.1609/aaai.v31i1.11230
– volume: 36
  start-page: 385
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0065
  article-title: Isotropic total variation regularization of displacements in parametric image registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2610583
– start-page: 800
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0018
– volume: 10553
  start-page: 204
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0005
  article-title: End-to-end unsupervised deformable image registration with a convolutional neural network. DLMIA 2017, ML-CDS 2017
  publication-title: Lect. Notes Comput. Sci
  doi: 10.1007/978-3-319-67558-9_24
– year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0046
– volume: 16
  start-page: 649
  year: 2013
  ident: 10.1016/j.media.2018.07.002_bib0071
  article-title: Unsupervised deep feature learning for deformable registration\nof MR brain images
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– start-page: 1
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0058
  article-title: Going deeper with convolutions
– year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0073
– ident: 10.1016/j.media.2018.07.002_bib0010
– volume: 2018
  year: 2018
  ident: 10.1016/j.media.2018.07.002_bib0026
  article-title: Label-driven weakly-supervised learning for multimodal deformable image registration
  publication-title: Biomed. Imaging (ISBI)
– ident: 10.1016/j.media.2018.07.002_bib0062
  doi: 10.1117/12.2007580
– volume: 313
  start-page: 390
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0051
  article-title: Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer
  publication-title: Jama
  doi: 10.1001/jama.2014.17942
– year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0034
– ident: 10.1016/j.media.2018.07.002_bib0015
  doi: 10.1007/978-3-319-66182-7_83
– volume: 26
  start-page: 1606
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0063
  article-title: Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-4015-6
– volume: 68
  start-page: 8
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0060
  article-title: Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2014.10.026
– volume: 35
  start-page: 1798
  year: 2013
  ident: 10.1016/j.media.2018.07.002_bib0002
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– start-page: 232
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0055
  article-title: Nonrigid Image Registration Using Multi-scale 3D Convolutional Neural Networks
– volume: 33
  start-page: 140
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0064
  article-title: A survey of medical image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.030
– year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0052
– ident: 10.1016/j.media.2018.07.002_bib0016
  doi: 10.1016/j.cmpb.2018.01.025
– ident: 10.1016/j.media.2018.07.002_bib0059
  doi: 10.1109/CVPR.2016.308
– year: 2016
  ident: 10.1016/j.media.2018.07.002_sbref0013
  article-title: Deep Residual Learning for Image Recognition
– start-page: 565
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0039
  article-title: V-Net: Fully convolutional neural networks for volumetric medical image segmentation
– year: 2001
  ident: 10.1016/j.media.2018.07.002_bib0049
– year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0031
– volume: 26
  start-page: 332
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0024
  article-title: Population-based prediction of subject-specific prostate deformation for MR-to-ultrasound image registration
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.10.006
– ident: 10.1016/j.media.2018.07.002_bib0021
– ident: 10.1016/j.media.2018.07.002_bib0012
– volume: 186
  start-page: 1281
  year: 2011
  ident: 10.1016/j.media.2018.07.002_bib0044
  article-title: Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging
  publication-title: J. Urol.
  doi: 10.1016/j.juro.2011.05.078
– volume: 18
  start-page: 712
  year: 1999
  ident: 10.1016/j.media.2018.07.002_bib0048
  article-title: Nonrigid registration using free-form deformations: application to breast MR images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– volume: 46
  start-page: R1
  year: 2001
  ident: 10.1016/j.media.2018.07.002_bib0020
  article-title: Medical image registration
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/3/201
– volume: 18
  start-page: 2137
  year: 2009
  ident: 10.1016/j.media.2018.07.002_bib0032
  article-title: A total variation-based algorithm for pixel-level image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2025006
– volume: 98
  start-page: 278
  year: 2010
  ident: 10.1016/j.media.2018.07.002_bib0040
  article-title: Fast free-form deformation using graphics processing units
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2009.09.002
– year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0056
– ident: 10.1016/j.media.2018.07.002_bib0070
  doi: 10.5244/C.31.10
– year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0053
– start-page: 2758
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0008
  article-title: FlowNet: learning optical flow with convolutional networks
– volume: 30
  start-page: 1887
  year: 2011
  ident: 10.1016/j.media.2018.07.002_bib0023
  article-title: Modelling prostate motion for data fusion during image-guided interventions
  publication-title: Med. Imaging
  doi: 10.1109/TMI.2011.2158235
– volume: 35
  start-page: 589
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0067
  article-title: Towards personalized statistical deformable model and hybrid point matching for robust MR-TRUS registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2485299
– ident: 10.1016/j.media.2018.07.002_bib0003
  doi: 10.1007/978-3-319-66182-7_35
– ident: 10.1016/j.media.2018.07.002_bib0014
  doi: 10.1117/12.2293300
– year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0029
– volume: 197
  start-page: e425
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0007
  article-title: MP33-20 the smarttarget biopsy trial: a prospective paired blinded trial with randomisation to compare visual-estimation and image-fusion targeted prostate biopsies
  publication-title: J. Urol
  doi: 10.1016/j.juro.2017.02.1016
– year: 2014
  ident: 10.1016/j.media.2018.07.002_bib0054
– volume: 59
  start-page: 477
  year: 2011
  ident: 10.1016/j.media.2018.07.002_bib0006
  article-title: Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2010.12.009
– volume: 33
  start-page: 33
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0041
  article-title: Reflections on ultrasound image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.015
– ident: 10.1016/j.media.2018.07.002_bib0066
  doi: 10.1109/TMI.2018.2791721
– ident: 10.1016/j.media.2018.07.002_bib0036
– volume: 2015
  start-page: 234
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0047
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Interv. MICCAI
– ident: 10.1016/j.media.2018.07.002_bib0028
  doi: 10.1109/CVPR.2017.179
– volume: 36
  start-page: 2010
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0004
  article-title: Robust 2-D-3-D registration optimization for motion compensation during 3-D TRUS-guided biopsy using learned prostate motion data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2703150
– volume: 6
  year: 2016
  ident: 10.1016/j.media.2018.07.002_bib0068
  article-title: Patient-specific deformation modelling via elastography: application to image-guided prostate interventions
  publication-title: Sci. Rep
– volume: 158
  start-page: 378
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0072
  article-title: Quicksilver: fast predictive image registration – a deep learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.008
– volume: 50
  start-page: 218
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0042
  article-title: Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0000000000000115
– volume: 64
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0025
  article-title: Development and phantom validation of a 3-D-ultrasound-guided system for targeting MRI-visible lesions during transrectal prostate biopsy
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2016.2582734
– ident: 10.1016/j.media.2018.07.002_bib0043
– ident: 10.1016/j.media.2018.07.002_bib0027
  doi: 10.1109/CVPR.2017.243
– volume: 55
  start-page: 1567
  year: 2014
  ident: 10.1016/j.media.2018.07.002_bib0069
  article-title: Hyperpolarized 13C MR for molecular imaging of prostate cancer
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.114.141705
– volume: 16
  start-page: 687
  year: 2012
  ident: 10.1016/j.media.2018.07.002_bib0022
  article-title: MR to ultrasound registration for image-guided prostate interventions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.11.003
– year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0057
  article-title: Three-dimensional nonrigid MR-TRUS registration using dual optimization
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2014.2375207
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.media.2018.07.002_bib0017
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: PMLR
– volume: 34
  start-page: 2535
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0030
  article-title: Statistical biomechanical surface registration: application to MR-TRUS fusion for prostate interventions
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2443978
– volume: 41
  start-page: 40
  year: 2017
  ident: 10.1016/j.media.2018.07.002_bib0009
  article-title: 3D deeply supervised network for automated segmentation of volumetric medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.05.001
– volume: 42
  start-page: 2470
  year: 2015
  ident: 10.1016/j.media.2018.07.002_bib0061
  article-title: Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy
  publication-title: Med. Phys.
  doi: 10.1118/1.4917481
SSID ssj0007440
Score 2.663298
Snippet •A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate...
One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms 3-D printers
Artificial neural networks
Centroids
Convolutional neural network
Deformation
Formability
Genetic transformation
Glands
Image registration
Image-guided intervention
Inference
Labels
Magnetic resonance imaging
Medical image registration
Medical imaging
Neural networks
NMR
Nuclear magnetic resonance
Organs
Patients
Prostate cancer
Training
Ultrasound
Weakly-supervised learning
Title Weakly-supervised convolutional neural networks for multimodal image registration
URI https://dx.doi.org/10.1016/j.media.2018.07.002
https://www.ncbi.nlm.nih.gov/pubmed/30007253
https://www.proquest.com/docview/2126555326
https://www.proquest.com/docview/2070250547
https://pubmed.ncbi.nlm.nih.gov/PMC6742510
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrYTggEp5BUoVJI6Y3dixvTkuVcvyaCUEhd4ivyIW2uyK3T1w6W_vTOJEXUA9cIqS2JFjj7-ZxJ-_AXhpnOfSGMnQNWmWey3Y2PqCOVEYbp232Yg2Ch-fqOlp_v5Mnm3BQbcXhmiVEftbTG_QOl4Zxt4cLmaz4edMULIS9FhjQWke8RNom4tCyQFsT959mJ70gEwaeO32q4xRhU58qKF5NRs0iOI1bkQ84--VfziovwPQP3mU1xzT0Q7cixFlOmkbfR-2Qr0Ld6_pDO7C7eO4gv4APn0L5uf5b7ZcLwgllsGnRDyPBojPIYHL5tDQw5cpBrVpwzq8mHu8PrtAAEopnUMnuPsQTo8OvxxMWUyrwJyUYsVsLjUfZ6pylRfaS6ms51WotPQGZ2eO76N0YVWlsswWPDhZyKrCb1nlVBBWikcwqOd1eAKpsSJzGKDpUUDElR5rKY_OsCo418bkCfCuL0sXNccp9cV52ZHLfpTNAJQ0AOWI1sJ5Aq_6SotWcuPm4qobpHLDckp0CjdX3OuGtIwTd1li45XEbuIqgRf9bZxytI5i6jBfYxmESYocc53A49YC-oYKsjcuRQJ6wzb6AiTnvXmnnn1vZL2VRvzMRk__932ewR06a5mGezBY_VqH5xgxrew-3Hp9me3HeYHHt28-fp1cAaM9GR0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrcTjgKC8QgsEiSNmN3Zsb46oolqgWwnRit4sO3bEQptdsbsHLv3tnXGcpQuoB06R4nHkx3hmHH_-BuC1rT2X1kqGrkmz0mvBRs5XrBaV5a72rhjSReHJsRqflh_P5NkWHPR3YQhWmWx_Z9OjtU5vBmk0B_PpdPClEJSsBD3WSFCaR9wC7ZRSaML1vb38jfMgBrzu8lXBSLynHoogr3g9gwBeo0jhmX6u_MM9_R1-_omivOaWDu_DvRRP5u-6Jj-ArdDuwt1rLIO7cGuSzs8fwuevwf44_8UWqznZiEXwOcHOk_rhd4jeMj4iOHyRY0ibR8zhxczj--kFmp-ckjn0dLuP4PTw_cnBmKWkCqyWUiyZK6Xmo0I1deOF9lIq53kTGi29xbVZYn-UrpxqVFG4iodaVrJpcCerahWEk-IxbLezNjyF3DpR1Bie6WFAeys91lIeXWFTca6tLTPg_ViaOjGOU-KLc9NDy76bOAGGJsAM6SScZ_BmXWneEW7cLK76STIbemPQJdxccb-fUpOW7cJg45XEYeIqg1frYlxwdIpi2zBboQwaSYobS53Bk04D1g0VpG9cigz0hm6sBYjMe7OknX6LpN5Ko_Ushs_-tz8v4fb4ZHJkjj4cf9qDO1TSYQ73YXv5cxWeY-y0dC_i2rgCRk4YWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly-supervised+convolutional+neural+networks+for+multimodal+image+registration&rft.jtitle=Medical+image+analysis&rft.au=Hu%2C+Yipeng&rft.au=Modat%2C+Marc&rft.au=Gibson%2C+Eli&rft.au=Li%2C+Wenqi&rft.date=2018-10-01&rft.eissn=1361-8423&rft.volume=49&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2018.07.002&rft_id=info%3Apmid%2F30007253&rft.externalDocID=30007253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon