Weakly-supervised convolutional neural networks for multimodal image registration

•A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate images.•Validation experiments with 108 pairs of labelled interventional patient images.•Open-source implementation. One of the fundamental cha...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 49; pp. 1 - 13
Main Authors Hu, Yipeng, Modat, Marc, Gibson, Eli, Li, Wenqi, Ghavami, Nooshin, Bonmati, Ester, Wang, Guotai, Bandula, Steven, Moore, Caroline M., Emberton, Mark, Ourselin, Sébastien, Noble, J. Alison, Barratt, Dean C., Vercauteren, Tom
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2018.07.002

Cover

More Information
Summary:•A method to infer voxel-level correspondence from higher-level anatomical labels.•Efficient and fully-automated registration for MR and ultrasound prostate images.•Validation experiments with 108 pairs of labelled interventional patient images.•Open-source implementation. One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1361-8415
1361-8423
1361-8423
DOI:10.1016/j.media.2018.07.002