考虑分布式电源出力调整的多目标配电网重构
配电网重构可以提高配电网运行的经济性和安全性,而分布式电源(Distributed Generator,DG)加入配电网直接影响潮流分布,对配电网重构将产生较大影响。考虑到DG对配电网重构的影响,以开关状态、DG出力为优化变量,建立了以网络损耗、负荷均衡化率最小为目标函数的多目标优化模型。将生成树、蚁群算法和遗传算法相结合,提出了求解上述模型的多目标混合优化方法,以实现配电网结构和DG出力的协同优化。该方法利用基于生成树原理的蚁群算法对配电网结构进行优化,保证蚂蚁路径满足网络拓扑约束,有效提高了可行解的数量;采用Pareto最优遗传算法对分布式电源出力进行优化,可获得满足多目标需求的若干优化方...
Saved in:
| Published in | 电力系统保护与控制 Vol. 40; no. 18; pp. 117 - 122 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国农业大学信息与电气工程学院,北京 100083%河北农业大学信息科学与技术学院,河北 保定 071001%新疆省电力科学研究院,新疆 乌鲁木齐 830063
2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-3415 |
Cover
| Summary: | 配电网重构可以提高配电网运行的经济性和安全性,而分布式电源(Distributed Generator,DG)加入配电网直接影响潮流分布,对配电网重构将产生较大影响。考虑到DG对配电网重构的影响,以开关状态、DG出力为优化变量,建立了以网络损耗、负荷均衡化率最小为目标函数的多目标优化模型。将生成树、蚁群算法和遗传算法相结合,提出了求解上述模型的多目标混合优化方法,以实现配电网结构和DG出力的协同优化。该方法利用基于生成树原理的蚁群算法对配电网结构进行优化,保证蚂蚁路径满足网络拓扑约束,有效提高了可行解的数量;采用Pareto最优遗传算法对分布式电源出力进行优化,可获得满足多目标需求的若干优化方案。仿真结果表明所提出方法能够实现DG出力和网络重构的综合优化和多目标优化. |
|---|---|
| Bibliography: | WANG Shao-lin, TANG Wei, BAI Mu-ke, Lü Tao, ZHANG Li-mei, GUAN Hong-hao (1. College of Information and Electrical Engineering, China Agriculture University, Beij ing 100083, China; 2. College of Information Science & Technology, Agricultural University of Hebei, Baoding 071001, China; 3. Xinjiang Electric Power Research Institute, Urumqi 830063, China) Distribution network reconfiguration can improve the operation economy and safety of the network, while distributed generation injected to distributed network directly affects flow distribution and has a greater impact on network reconfiguration. Considering the impact of distributed generation on network reconfiguration, this paper makes switch status and DG output as the optimization variables, and establishes a multi-objective optimization model which takes network loss and load balancing rate as the objective functions. The paper puts forward a multi-objective mixed optimization method combining spanning tree and ant colony algorithm with genetic algorithm, |
| ISSN: | 1674-3415 |