Fermi surface chirality induced in a TaSe2 monosheet formed by a Ta/Bi2Se3 interface reaction

Spin-momentum locking in topological insulators and materials with Rashba-type interactions is an extremely attractive feature for novel spintronic devices and is therefore under intense investigation. Significant efforts are underway to identify new material systems with spin-momentum locking, but...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 2472 - 8
Main Authors Polyakov, Andrey, Mohseni, Katayoon, Felici, Roberto, Tusche, Christian, Chen, Ying-Jun, Feyer, Vitaly, Geck, Jochen, Ritschel, Tobias, Ernst, Arthur, Rubio-Zuazo, Juan, Castro, German R., Meyerheim, Holger L., Parkin, Stuart S. P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.05.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-022-30093-1

Cover

More Information
Summary:Spin-momentum locking in topological insulators and materials with Rashba-type interactions is an extremely attractive feature for novel spintronic devices and is therefore under intense investigation. Significant efforts are underway to identify new material systems with spin-momentum locking, but also to create heterostructures with new spintronic functionalities. In the present study we address both subjects and investigate a van der Waals-type heterostructure consisting of the topological insulator Bi 2 Se 3 and a single Se-Ta-Se triple-layer (TL) of H-type TaSe 2 grown by a method which exploits an interface reaction between the adsorbed metal and selenium. We then show, using surface x-ray diffraction, that the symmetry of the TaSe 2 -like TL is reduced from D 3 h to C 3 v resulting from a vertical atomic shift of the tantalum atom. Spin- and momentum-resolved photoemission indicates that, owing to the symmetry lowering, the states at the Fermi surface acquire an in-plane spin component forming a surface contour with a helical Rashba-like spin texture, which is coupled to the Dirac cone of the substrate. Our approach provides a route to realize chiral two-dimensional electron systems via interface engineering in van der Waals epitaxy that do not exist in the corresponding bulk materials. Current limitations of spintronics devices based on bulk topological materials stimulate the search for new materials and structures with interesting spin properties. Here the authors report a chiral spin texture around the Fermi level related to structural symmetry breaking in a TaSe 2 layer grown on a Bi2Se3 surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30093-1