Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7
NRC publication: No
Saved in:
Published in | Science advances Vol. 5; no. 7; p. eaau9433 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.aau9433 |
Cover
Summary: | NRC publication: No Apoptosis is a complex multi-step process driven by caspase-dependent proteolytic cleavage cascades. Dysregulation of apoptosis promotes tumorigenesis and limits the efficacy of chemotherapy. To assess the complex interactions among caspases during apoptosis, we disrupted caspase-8, -9, -3, -7, or -6 and combinations thereof, using CRISPR-based genome editing in living human leukemia cells. While loss of apical initiator caspase-8 or -9 partially blocked extrinsic or intrinsic apoptosis, respectively, only combined loss of caspase-3 and -7 fully inhibited both apoptotic pathways, with no discernible effect of caspase-6 deficiency alone or in combination. Caspase-3/7 double knockout cells exhibited almost complete inhibition of caspase-8 or -9 activation. Furthermore, deletion of caspase-3 and -7 decreased mitochondrial depolarization and cytochrome c release upon apoptosis activation. Thus, activation of effector caspase-3 or -7 sets off explosive feedback amplification of upstream apoptotic events, which is a key feature of apoptotic signaling essential for efficient apoptotic cell death. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.aau9433 |