Evaluation of Two Broadly Used Commercial Methods for Detection of Respiratory Viruses with a Recently Added New Target for Detection of SARS-CoV-2

The clinical symptoms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nonspecific and can be associated with most other respiratory viruses that cause acute respiratory tract infections (ARI). Because the clinical differentiation of COVID-19 patients from those with ot...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 14; no. 7; p. 1530
Main Authors Jevšnik Virant, Monika, Uršič, Tina, Kogoj, Rok, Korva, Miša, Petrovec, Miroslav, Avšič-Županc, Tatjana
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.07.2022
MDPI
Subjects
Online AccessGet full text
ISSN1999-4915
1999-4915
DOI10.3390/v14071530

Cover

More Information
Summary:The clinical symptoms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nonspecific and can be associated with most other respiratory viruses that cause acute respiratory tract infections (ARI). Because the clinical differentiation of COVID-19 patients from those with other respiratory viruses is difficult, the evaluation of automated methods to detect important respiratory viruses together with SARS-CoV-2 seems necessary. Therefore, this study compares two molecular assays for the detection of respiratory viruses, including SARS-CoV-2: the Respiratory Viruses 16-Well Assay (AusDiagnostics, Pty Ltd., Mascot, Australia) and the Allplex™ RV Essential Assay coupled with the Allplex™-nCoV Assay (Seegene Inc., Seoul, Korea). The two methods (AusDiagnostics and AlplexTM-nCoV Assay SARS-CoV-2) had 98.6% agreement with the reference method, cobas 6800, for the detection of SARS-CoV-2. Agreement between the AusDiagnostics assay and the AlplexTM RV Essential Assay for the detection of seven respiratory viruses was 99%. In our experience, the Respiratory Viruses 16-Well Assay proved to be the most valuable and useful medium-throughput method for simultaneous detection of important respiratory viruses and SARS-CoV-2. The main advantages of the method are high specificity for all targets included and their simultaneous detection and medium throughput with the option of having multiple instruments provide a constant run.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1999-4915
1999-4915
DOI:10.3390/v14071530