Influence of Season, Storage Temperature and Time of Sample Collection in Pancreatitis-Associated Protein-Based Algorithms for Newborn Screening for Cystic Fibrosis

Newborn screening (NBS) for cystic fibrosis (CF) based on pancreatitis-associated protein (PAP) has been performed for several years. While some influencing factors are known, there is currently a lack of information on the influence of seasonal temperature on PAP determination or on the course of P...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of neonatal screening Vol. 10; no. 1; p. 5
Main Authors Maier, Pia, Jeyaweerasinkam, Sumathy, Eberhard, Janina, Soueidan, Lina, Hämmerling, Susanne, Kohlmüller, Dirk, Feyh, Patrik, Gramer, Gwendolyn, Garbade, Sven F., Hoffmann, Georg F., Okun, Jürgen G., Sommerburg, Olaf
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.01.2024
MDPI
Subjects
Online AccessGet full text
ISSN2409-515X
2409-515X
DOI10.3390/ijns10010005

Cover

More Information
Summary:Newborn screening (NBS) for cystic fibrosis (CF) based on pancreatitis-associated protein (PAP) has been performed for several years. While some influencing factors are known, there is currently a lack of information on the influence of seasonal temperature on PAP determination or on the course of PAP blood concentration in infants during the first year of life. Using data from two PAP studies at the Heidelberg NBS centre and storage experiments, we compared PAP determinations in summer and winter and determined the direct influence of temperature. In addition, PAP concentrations measured in CF-NBS, between days 21–35 and 36–365, were compared. Over a 7-year period, we found no significant differences between PAP concentrations determined in summer or winter. We also found no differences in PAP determination after 8 days of storage at 4 °C, room temperature or 37 °C. When stored for up to 3 months, PAP samples remained stable at 4 °C, but not at room temperature (p = 0.007). After birth, PAP in neonatal blood showed a significant increasing trend up to the 96th hour of life (p < 0.0001). During the first year of life, blood PAP concentrations continued to increase in both CF- (36–72 h vs. 36–365 d p < 0.0001) and non-CF infants (36–72 h vs. 36–365 d p < 0.0001). Seasonal effects in central Europe appear to have a limited impact on PAP determination. The impact of the increase in blood PAP during the critical period for CF-NBS and beyond on the applicability and performance of PAP-based CF-NBS algorithms needs to be re-discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current address: Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
ISSN:2409-515X
2409-515X
DOI:10.3390/ijns10010005