Hierarchical multi-label prediction of gene function

Motivation: Assigning functions for unknown genes based on diverse large-scale data is a key task in functional genomics. Previous work on gene function prediction has addressed this problem using independent classifiers for each function. However, such an approach ignores the structure of functiona...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 22; no. 7; pp. 830 - 836
Main Authors Barutcuoglu, Zafer, Schapire, Robert E., Troyanskaya, Olga G.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2006
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btk048

Cover

More Information
Summary:Motivation: Assigning functions for unknown genes based on diverse large-scale data is a key task in functional genomics. Previous work on gene function prediction has addressed this problem using independent classifiers for each function. However, such an approach ignores the structure of functional class taxonomies, such as the Gene Ontology (GO). Over a hierarchy of functional classes, a group of independent classifiers where each one predicts gene membership to a particular class can produce a hierarchically inconsistent set of predictions, where for a given gene a specific class may be predicted positive while its inclusive parent class is predicted negative. Taking the hierarchical structure into account resolves such inconsistencies and provides an opportunity for leveraging all classifiers in the hierarchy to achieve higher specificity of predictions. Results: We developed a Bayesian framework for combining multiple classifiers based on the functional taxonomy constraints. Using a hierarchy of support vector machine (SVM) classifiers trained on multiple data types, we combined predictions in our Bayesian framework to obtain the most probable consistent set of predictions. Experiments show that over a 105-node subhierarchy of the GO, our Bayesian framework improves predictions for 93 nodes. As an additional benefit, our method also provides implicit calibration of SVM margin outputs to probabilities. Using this method, we make function predictions for multiple proteins, and experimentally confirm predictions for proteins involved in mitosis. Supplementary information: Results for the 105 selected GO classes and predictions for 1059 unknown genes are available at: Contact:ogt@cs.princeton.edu
Bibliography:ark:/67375/HXZ-B9T1B3M4-X
To whom Correspondence should be addressed.
Associate Editor: Alvis Brazma
istex:9BED1132E126A5DF2C82E27D5804AD2842D19C99
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btk048