miR-182, miR-221 and miR-222 are potential urinary extracellular vesicle biomarkers for canine urothelial carcinoma

Current diagnostic methods for canine urothelial carcinoma (UC) are technically challenging or can lack specificity, hence there is a need for novel biomarkers of UC. To this end, we analysed the microRNA (miRNA) cargo of extracellular vesicles (EVs) from urine samples of dogs with UC to identify ca...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 17967 - 11
Main Authors Karttunen, Jenni, Kalmar, Lajos, Grant, Andrew, Ying, Jun, Stewart, Sarah E., Wang, Xiaonan, Frankl, Fiona Karet, Williams, Tim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-69070-7

Cover

More Information
Summary:Current diagnostic methods for canine urothelial carcinoma (UC) are technically challenging or can lack specificity, hence there is a need for novel biomarkers of UC. To this end, we analysed the microRNA (miRNA) cargo of extracellular vesicles (EVs) from urine samples of dogs with UC to identify candidate miRNA biomarkers. Urine was fractionated using ultrafiltration combined with size-exclusion chromatography and small RNA sequencing analysis was performed on both the EV enriched and (EV free) protein fractions. A greater number of candidate miRNA biomarkers were detected in the EV fraction than the protein fraction, and further validation using droplet digital PCR (ddPCR) was performed on the EV enriched fraction of a second cohort of dogs with UC which indicated that miR-182, miR-221 and miR-222 were significantly overrepresented in dogs with UC when compared with healthy dogs and dogs with urinary tract infections. Pathway analysis confirmed that these three miRNAs are involved in cancer. In addition, their potential downstream gene targets were predicted and PIK3R1, a well-known oncogene is likely to be a shared target between miRNA-182 and miRNA-221/222. In summary, this study highlights the potential of urinary EV-associated miRNAs as a source of biomarkers for the diagnosis of canine UC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-69070-7