High-resolution line-scan Brillouin microscopy for live imaging of mechanical properties during embryo development
Brillouin microscopy can assess mechanical properties of biological samples in a three-dimensional (3D), all-optical and hence non-contact fashion, but its weak signals often lead to long imaging times and require an illumination dosage harmful for living organisms. Here, we present a high-resolutio...
Saved in:
Published in | Nature methods Vol. 20; no. 5; pp. 755 - 760 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.05.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/s41592-023-01822-1 |
Cover
Summary: | Brillouin microscopy can assess mechanical properties of biological samples in a three-dimensional (3D), all-optical and hence non-contact fashion, but its weak signals often lead to long imaging times and require an illumination dosage harmful for living organisms. Here, we present a high-resolution line-scanning Brillouin microscope for multiplexed and hence fast 3D imaging of dynamic biological processes with low phototoxicity. The improved background suppression and resolution, in combination with fluorescence light-sheet imaging, enables the visualization of the mechanical properties of cells and tissues over space and time in living organism models such as fruit flies, ascidians and mouse embryos.
Line-scan Brillouin microscopy enables fast 3D imaging of mechanical properties with low phototoxicity, as shown for
Drosophila
and mouse embryos, as well as ascidians. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1548-7091 1548-7105 1548-7105 |
DOI: | 10.1038/s41592-023-01822-1 |