Analyzing postprandial metabolomics data using multiway models: a simulation study
Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time...
Saved in:
Published in | BMC bioinformatics Vol. 25; no. 1; pp. 94 - 22 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
04.03.2024
Springer Nature B.V BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-024-05686-w |
Cover
Abstract | Background
Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a
subjects
by
metabolites
by
time points
array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.
Results
We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of
fasting-state
data using principal component analysis,
T0-corrected
data (i.e., data corrected by subtracting fasting-state data) using a CP model and
full-dynamic
(i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.
Conclusions
Our experiments show that it is crucial to analyze both
fasting-state
and
T0-corrected
data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of
T0-corrected
or
full-dynamic
data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. |
---|---|
AbstractList | Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.
We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.
Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. BackgroundAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.ResultsWe introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.ConclusionsOur experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. Abstract Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.BACKGROUNDAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.RESULTSWe introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.CONCLUSIONSOur experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis. |
ArticleNumber | 94 |
Author | Rasmussen, Morten A. Acar, Evrim Chawes, Bo Horner, David Li, Lu Hoefsloot, Huub Smilde, Age K. Bakker, Barbara M. Yan, Shi |
Author_xml | – sequence: 1 givenname: Lu surname: Li fullname: Li, Lu email: lu@simula.no organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering – sequence: 2 givenname: Shi surname: Yan fullname: Yan, Shi organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering – sequence: 3 givenname: Barbara M. surname: Bakker fullname: Bakker, Barbara M. organization: Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen – sequence: 4 givenname: Huub surname: Hoefsloot fullname: Hoefsloot, Huub organization: Swammerdam Institute for Life Sciences, University of Amsterdam – sequence: 5 givenname: Bo surname: Chawes fullname: Chawes, Bo organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen – sequence: 6 givenname: David surname: Horner fullname: Horner, David organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen – sequence: 7 givenname: Morten A. surname: Rasmussen fullname: Rasmussen, Morten A. organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Department of Food Science, University of Copenhagen – sequence: 8 givenname: Age K. surname: Smilde fullname: Smilde, Age K. organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Swammerdam Institute for Life Sciences, University of Amsterdam – sequence: 9 givenname: Evrim surname: Acar fullname: Acar, Evrim email: evrim@simula.no organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38438850$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFSEUxYmpsX_0C7gwk7hxMwoDzDBuTNO02qSJidE1YeDOkxcGnsD48vz08t602nbRFeRyzi-HnHuKjnzwgNBrgt8TItoPiTSC9zVuWI15K9p6-wydENaRuiGYH927H6PTlNYYk05g_gIdU8GoEByfoG_nXrndH-tX1SakvInKG6tcNUFWQ3BhsjpVRmVVzWkvmmaX7VbtqikYcOljpapky1BlG3yV8mx2L9HzUbkEr27PM_Tj6vL7xZf65uvn64vzm1pzRnINeDQGNO_02BDOBy6MAKM73GmtGXQtaxuDm0EPg6BMazAgAGONqaB4BEHP0PXCNUGt5SbaScWdDMrKwyDElVQxW-1AirZXLSGEi16znop-1MApH4EZpk2PC-vTwtrMw1RSgM9RuQfQhy_e_pSr8FsS3BPaNrQQ3t0SYvg1Q8pyskmDc8pDmJNsetp1mDJOivTtI-k6zLH0sFeVIilv8f57b-5H-pflrrsiEItAx5BShFFqmw89lITWlWhyvyZyWRNZ1kQe1kRui7V5ZL2jP2miiykVsV9B_B_7Cddf-8PSOA |
CitedBy_id | crossref_primary_10_1007_s11306_024_02128_9 crossref_primary_10_1080_12460125_2024_2371670 crossref_primary_10_1007_s11306_024_02109_y crossref_primary_10_3390_biom14121561 crossref_primary_10_3390_metabo14100533 crossref_primary_10_3390_metabo15010002 |
Cites_doi | 10.1038/s41598-019-57257-2 10.1002/0470012110 10.1002/hbm.23425 10.1007/s11306-013-0591-0 10.2337/dc11-1593 10.1007/s11306-014-0673-7 10.1016/j.neuron.2018.05.015 10.1007/s11306-011-0320-5 10.1038/s41587-020-0660-7 10.1016/S1081-1206(10)61398-1 10.1073/pnas.0705408104 10.1016/j.isci.2021.102101 10.1186/s12859-019-3333-0 10.1007/BF02310791 10.3389/fnins.2022.861402 10.1038/s41591-020-0934-0 10.3390/nu14030472 10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.CO;2-Y 10.1002/cem.773 10.1016/j.cell.2015.11.001 10.1002/cem.1335 10.1016/0196-6774(90)90014-6 10.1093/bioinformatics/btm210 10.1016/j.chemolab.2010.08.004 10.1016/j.aca.2005.02.042 10.1002/cem.3232 10.1093/ajcn/63.6.911 10.1378/chest.07-0052 10.1002/cem.2895 10.1016/j.chemolab.2004.07.003 10.1093/bioinformatics/bti476 10.1137/07070111X 10.1109/ICASSP40776.2020.9053902 10.1039/b902242b 10.1007/s11306-020-01759-y 10.1109/TKDE.2008.112 10.1016/S0169-7439(97)00032-4 10.1186/1755-8794-6-44 10.1016/0024-3795(77)90069-6 10.1109/MSP.2022.3163870 10.1016/j.conctc.2018.03.008 10.1186/1471-2105-10-52 10.1016/S0899-9007(99)00212-9 10.1145/2915921 10.1002/cem.801 10.1002/sapm192761164 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-024-05686-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_869a6111589c49389fce535fe4d4cd90 PMC10913623 38438850 10_1186_s12859_024_05686_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Novo Nordisk Fonden grantid: NNF19OC0057934; NNF19OC0057934; NNF19OC0057934; NNF19OC0057934 funderid: http://dx.doi.org/10.13039/501100009708 – fundername: Norges Forskningsråd grantid: 300489; 300489; 300489; 300489; 300489 funderid: http://dx.doi.org/10.13039/501100005416 – fundername: Novo Nordisk Fonden grantid: NNF19OC0057934 – fundername: Norges Forskningsråd grantid: 300489 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c541t-e0fddec57cf2155b58d8edc707ccc4e76462d02bcbb834ccede8e00c03830fe83 |
IEDL.DBID | 8FG |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:26:16 EDT 2025 Tue Sep 30 17:09:55 EDT 2025 Fri Sep 05 08:48:42 EDT 2025 Wed Oct 01 16:56:52 EDT 2025 Thu Apr 03 07:02:18 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Wed Oct 01 04:15:44 EDT 2025 Sat Sep 06 07:27:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CANDECOMP/PARAFAC (CP) Meal challenge test Whole-body metabolic model Time-resolved metabolomics data Tensor factorizations (multiway data analysis) Postprandial metabolomics data Principal component analysis (PCA) |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e0fddec57cf2155b58d8edc707ccc4e76462d02bcbb834ccede8e00c03830fe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2956835608?pq-origsite=%requestingapplication% |
PMID | 38438850 |
PQID | 2956835608 |
PQPubID | 44065 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_869a6111589c49389fce535fe4d4cd90 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913623 proquest_miscellaneous_2937703451 proquest_journals_2956835608 pubmed_primary_38438850 crossref_citationtrail_10_1186_s12859_024_05686_w crossref_primary_10_1186_s12859_024_05686_w springer_journals_10_1186_s12859_024_05686_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-04 |
PublicationDateYYYYMMDD | 2024-03-04 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2024 |
Publisher | BioMed Central Springer Nature B.V BMC |
Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
References | R Bro (5686_CR40) 2003; 17 L Pellis (5686_CR15) 2012; 8 P Harrington (5686_CR11) 2005; 544 E Acar (5686_CR43) 2011; 25 5686_CR44 AK Smilde (5686_CR49) 2009; 134 K Saito (5686_CR48) 2014; 10 RD Mattes (5686_CR27) 1996; 63 AA Kumar (5686_CR5) 2020; 10 JD Carroll (5686_CR20) 1970; 35 M Thiel (5686_CR13) 2017; 31 KF Petersen (5686_CR45) 2007; 104 J Håstad (5686_CR38) 1990; 11 A Gardlo (5686_CR24) 2016; 12 AH Williams (5686_CR35) 2018; 98 KE Merz (5686_CR46) 2011; 10 M Martin (5686_CR14) 2020; 34 5686_CR55 G Tomasi (5686_CR36) 2005; 75 5686_CR54 5686_CR53 J Twisk (5686_CR26) 2018; 10 5686_CR51 E Acar (5686_CR17) 2009; 21 5686_CR19 JB Kruskal (5686_CR21) 1977; 18 H Bisgaard (5686_CR30) 2004; 93 T Adali (5686_CR39) 2022; 39 E Acar (5686_CR34) 2007; 23 E Müllner (5686_CR8) 2021; 17 G Lépine (5686_CR4) 2022; 14 A Smilde (5686_CR18) 2004 5686_CR22 L Li (5686_CR25) 2022; 23 R Bro (5686_CR42) 2003; 17 A Kahler (5686_CR47) 1999; 15 AL Harte (5686_CR1) 2012; 35 EE Papalexakis (5686_CR33) 2016; 8 AK Smilde (5686_CR10) 2005; 21 RA Harshman (5686_CR41) 1984 C Martino (5686_CR23) 2021; 39 H Kurata (5686_CR29) 2021; 24 SE Berry (5686_CR7) 2020; 26 D Zeevi (5686_CR6) 2015; 163 MK Wojczynski (5686_CR3) 2011; 10 DJ Vis (5686_CR9) 2015; 11 TG Kolda (5686_CR16) 2009; 51 KH Madsen (5686_CR52) 2017; 38 T Jendoubi (5686_CR56) 2020; 21 JH Stroeve (5686_CR31) 2015; 10 E Acar (5686_CR37) 2011; 106 S Wopereis (5686_CR2) 2017; 12 D Vilozni (5686_CR50) 2007; 132 U Thissen (5686_CR12) 2009; 10 S Wopereis (5686_CR28) 2013; 6 FL Hitchcock (5686_CR32) 1927; 6 |
References_xml | – volume: 10 start-page: 353 year: 2020 ident: 5686_CR5 publication-title: Sci Rep doi: 10.1038/s41598-019-57257-2 – volume-title: Multi-Way Analysis: Applications in the Chemical Sciences year: 2004 ident: 5686_CR18 doi: 10.1002/0470012110 – volume: 38 start-page: 882 year: 2017 ident: 5686_CR52 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23425 – volume: 10 start-page: 402 issue: 3 year: 2014 ident: 5686_CR48 publication-title: Metabolomics doi: 10.1007/s11306-013-0591-0 – volume: 35 start-page: 375 issue: 2 year: 2012 ident: 5686_CR1 publication-title: Diabetes Care doi: 10.2337/dc11-1593 – volume: 11 start-page: 50 issue: 1 year: 2015 ident: 5686_CR9 publication-title: Metabolomics doi: 10.1007/s11306-014-0673-7 – volume: 98 start-page: 1099 issue: 6 year: 2018 ident: 5686_CR35 publication-title: Neuron doi: 10.1016/j.neuron.2018.05.015 – volume: 8 start-page: 347 year: 2012 ident: 5686_CR15 publication-title: Metabolomics doi: 10.1007/s11306-011-0320-5 – volume: 39 start-page: 165 issue: 2 year: 2021 ident: 5686_CR23 publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0660-7 – volume: 93 start-page: 381 issue: 4 year: 2004 ident: 5686_CR30 publication-title: Ann Allergy Asthma Immunol doi: 10.1016/S1081-1206(10)61398-1 – volume: 104 start-page: 12587 issue: 31 year: 2007 ident: 5686_CR45 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0705408104 – volume: 24 issue: 2 year: 2021 ident: 5686_CR29 publication-title: iScience doi: 10.1016/j.isci.2021.102101 – volume: 21 start-page: 11 year: 2020 ident: 5686_CR56 publication-title: BMC Bioinf doi: 10.1186/s12859-019-3333-0 – ident: 5686_CR51 – volume: 35 start-page: 283 issue: 3 year: 1970 ident: 5686_CR20 publication-title: Psychometrika doi: 10.1007/BF02310791 – ident: 5686_CR54 doi: 10.3389/fnins.2022.861402 – volume: 26 start-page: 964 issue: 6 year: 2020 ident: 5686_CR7 publication-title: Nat Med doi: 10.1038/s41591-020-0934-0 – volume: 12 start-page: 1 issue: 21 year: 2017 ident: 5686_CR2 publication-title: Genes Nutrit – volume: 14 start-page: 472 issue: 3 year: 2022 ident: 5686_CR4 publication-title: Nutrients doi: 10.3390/nu14030472 – ident: 5686_CR55 doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.CO;2-Y – volume: 10 start-page: 785 issue: 3 year: 2011 ident: 5686_CR46 publication-title: Compr Physiol – ident: 5686_CR44 – volume: 17 start-page: 16 issue: 1 year: 2003 ident: 5686_CR42 publication-title: J Chemom doi: 10.1002/cem.773 – volume: 23 start-page: 1 issue: 31 year: 2022 ident: 5686_CR25 publication-title: BMC Bioinf – volume: 12 start-page: 1 issue: 12 year: 2016 ident: 5686_CR24 publication-title: Metabolomics – volume: 163 start-page: 1079 issue: 5 year: 2015 ident: 5686_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.11.001 – ident: 5686_CR19 – volume: 25 start-page: 67 issue: 2 year: 2011 ident: 5686_CR43 publication-title: J Chemom doi: 10.1002/cem.1335 – volume: 11 start-page: 644 issue: 4 year: 1990 ident: 5686_CR38 publication-title: J Algorithms doi: 10.1016/0196-6774(90)90014-6 – volume: 23 start-page: 10 issue: 13 year: 2007 ident: 5686_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm210 – volume: 106 start-page: 41 issue: 1 year: 2011 ident: 5686_CR37 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2010.08.004 – volume: 544 start-page: 118 issue: 1–2 year: 2005 ident: 5686_CR11 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2005.02.042 – volume: 34 start-page: 3232 issue: 6 year: 2020 ident: 5686_CR14 publication-title: J Chemom doi: 10.1002/cem.3232 – volume: 63 start-page: 911 issue: 6 year: 1996 ident: 5686_CR27 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/63.6.911 – volume: 132 start-page: 497 issue: 2 year: 2007 ident: 5686_CR50 publication-title: Chest doi: 10.1378/chest.07-0052 – volume: 31 start-page: 2895 issue: 6 year: 2017 ident: 5686_CR13 publication-title: J Chemom doi: 10.1002/cem.2895 – volume: 75 start-page: 163 issue: 2 year: 2005 ident: 5686_CR36 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2004.07.003 – volume: 21 start-page: 3043 issue: 13 year: 2005 ident: 5686_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti476 – volume: 51 start-page: 455 issue: 3 year: 2009 ident: 5686_CR16 publication-title: SIAM Rev doi: 10.1137/07070111X – ident: 5686_CR53 doi: 10.1109/ICASSP40776.2020.9053902 – volume: 134 start-page: 2281 issue: 11 year: 2009 ident: 5686_CR49 publication-title: Analyst doi: 10.1039/b902242b – volume: 17 start-page: 1 issue: 1 year: 2021 ident: 5686_CR8 publication-title: Metabolomics doi: 10.1007/s11306-020-01759-y – volume: 21 start-page: 6 issue: 1 year: 2009 ident: 5686_CR17 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.112 – volume: 10 start-page: 1 issue: 181 year: 2011 ident: 5686_CR3 publication-title: Lipids Health Dis – ident: 5686_CR22 doi: 10.1016/S0169-7439(97)00032-4 – volume: 6 start-page: 44 year: 2013 ident: 5686_CR28 publication-title: BMC Med Genom doi: 10.1186/1755-8794-6-44 – volume: 10 start-page: 1 issue: 3 year: 2015 ident: 5686_CR31 publication-title: Genes Nutrit – volume: 18 start-page: 95 issue: 2 year: 1977 ident: 5686_CR21 publication-title: Linear Algebra Appl doi: 10.1016/0024-3795(77)90069-6 – volume: 39 start-page: 8 issue: 4 year: 2022 ident: 5686_CR39 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2022.3163870 – volume: 10 start-page: 80 year: 2018 ident: 5686_CR26 publication-title: Contemp Clin Trials Commun doi: 10.1016/j.conctc.2018.03.008 – volume: 10 start-page: 1 issue: 1 year: 2009 ident: 5686_CR12 publication-title: BMC Bioinf doi: 10.1186/1471-2105-10-52 – volume: 15 start-page: 819 issue: 11–12 year: 1999 ident: 5686_CR47 publication-title: Nutrition doi: 10.1016/S0899-9007(99)00212-9 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 5686_CR33 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/2915921 – volume: 17 start-page: 274 issue: 5 year: 2003 ident: 5686_CR40 publication-title: J Chemom doi: 10.1002/cem.801 – volume: 6 start-page: 164 issue: 1 year: 1927 ident: 5686_CR32 publication-title: J Math Phys doi: 10.1002/sapm192761164 – start-page: 602 volume-title: An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques in Research Methods for Multimode Data Analysis year: 1984 ident: 5686_CR41 |
SSID | ssj0017805 |
Score | 2.471978 |
Snippet | Background
Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for... Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early... BackgroundAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for... Abstract Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 94 |
SubjectTerms | Algorithms Bioinformatics Biomarkers Biomedical and Life Sciences CANDECOMP/PARAFAC (CP) Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data analysis Diabetes Enzyme kinetics Fasting Glucose Insulin resistance Life Sciences Meal challenge test Metabolic disorders Metabolism Metabolites Metabolomics Microarrays Musculoskeletal system Ordinary differential equations Performance assessment Postprandial metabolomics data Principal component analysis (PCA) Principal components analysis Simulation Tensor factorizations (multiway data analysis) Time-resolved metabolomics data Variance analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9F2naVCht1ZEth4e55aEhlBoD6WB3IQlj9tA4l1ihyX99R3J9rbb56VXSzLjeXhm0Mw3jL0q29AYVXgBBqXQdYXCY-6FtaZqvC8s-tjv_P6DPT3T787N-Q-jvmJN2AgPPDJuH2xVWzJIA1XQFbnXNqBRpkXd6NBUKVsnNzYnU9P9QUTqn1tkwO73ecRpE-SPBDl8sGK14YYSWv_vQsxfKyV_ui5NXujkPrs3hY_8cCT7AbuD3UO2PQ6UvH3EPiaMka90lC8X_bC8jk0rtP8KBxL2ZexA7nksCuWx3v0zT-WEq_qWp4E4_QGveX9xNU304gl69jE7O3n76fhUTFMTRDA6HwTKln5ZwZShJXduvIEG6ANKWYYQNJZW26KRhQ_eg9IhYIOAUgZJuapsEdQTttUtOnzGuNGo0UtNAgXdqlBbqLHWvm1JIuBDxvKZiS5MkOJxssWlS6kFWDcy3hHjXWK8W2Xs9frMcgTU-Ovuoyib9c4Ihp0ekIq4SUXcv1QkY7uzZN1kob0rYp-kongPMvZyvUy2FS9M6g4XN3GPKumPqE2esaejIqwpUaAVgKGXw4aKbJC6udJdfEn43QmLlcLOjL2Ztek7XX_mxc7_4MVzdrdIZqCE1Ltsa7i-wRcUVg1-L1nQN3ONIRc priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9qRfBF_Da2ygrii65ush_ZCCIqliLUB_Ggb0t2M6mFa-56Sbmef72zm-TK6dnX7AeT2ZmdWWbmN4S8zGtfKZE5ZhRwJssCmIPUMa1VUTmXaXCh3vnouz6cyG_H6niHjOm2AwPbrU-70E9qspi-vTxffUSF_xAV3uh3bRpQ2BhaG4bm3Gi2fDU_Z6GxVAjADl02bpCbaKyyIPhH8irQECD9x1qarVtt2KsI67_NF_03pfKvuGo0Vwd3yZ3Bz6SfesG4R3aguU9u9Z0nVw_IjwhG8huX0vms7eaLUN2C88-gQ6mYhlLllobsURoS409ozDtclisaO-e072lJ29OzofUXjRi1D8nk4OvPL4dsaK_AvJJpx4DXeLd5lfsa7b5yylQGfyDnufdeQq6lziqeOe-cEdJ7qMAA557jo5bXYMQjstvMGnhCqJIgwXGJJ29kLXypTQmldHWtka3OJyQdmWj9gD0eWmBMbXyDGG17xltkvI2Mt8uEvF6vmffIG9fO_hzOZj0zoGbHD7PFiR2U0BpdlEhQqkzhZYGuWu1BCVWDrKSvCp6Q_fFk7SiJNgsFlQIdQ5OQF-thVMIQWSkbmF2EOSLHq1OqNCGPe0FYUyKMFMYo3NxsiMgGqZsjzemvCPQdQVvRP03Im1Garuj6Py-eXv8be-R2FgVcMC73yW63uIBn6Fl17nnUjT-ZDiQb priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB-0IngRv5taZQVvurjJfmTjTR-WIuhBLPS2ZDcTLbR5jyblUf_6zm7yok-r4DU7GzbzsTNhZn4D8LJsQ6Nl4bnVKLiqK-Qec8-N0VXjfWHQx37nT5_N4ZH6eKyPJ5ic2Avza_4-t-ZNn0eENU6ehJOrtoavb8ItTRdvLN9bmMWcMYjY_JummGv3bTmehM9_XVD5Z23kbwnS5HcO7sHdKWBk70YJ34cb2D2A2-MIycuH8CWhivygrWy17IfVeWxTIfozHEi8p7HnuGexDJTFCvdvLBUQrutLlkbg9G9ZzfqTs2mGF0tgs4_g6ODD18Uhn-Yk8KBVPnAULV1SQZehJQeuvbaNpQ8oRRlCUFgaZYpGFD54b6UKARu0KEQQ9HcqWrTyMex0yw53gWmFCr1QJEKrWhlqY2uslW9bQ2z1IYN8w0QXJhDxOMvi1KWfCWvcyHhHjHeJ8W6dwat5z2qE0Pgn9fsom5kywl-nB6QVbrImZ01V04FybaugKoq52oBa6hZVo0JTiQz2N5J1k032roidkZIiPJvBi3mZrCmmSOoOlxeRRpZ0ByqdZ_BkVIT5JNIqaa2ml9stFdk66vZKd_I9IXYn9FUKNDN4vdGmn-f6Oy_2_o_8KdwpksJLLtQ-7AznF_iMQqbBP0-2cgVQexKC priority: 102 providerName: Springer Nature |
Title | Analyzing postprandial metabolomics data using multiway models: a simulation study |
URI | https://link.springer.com/article/10.1186/s12859-024-05686-w https://www.ncbi.nlm.nih.gov/pubmed/38438850 https://www.proquest.com/docview/2956835608 https://www.proquest.com/docview/2937703451 https://pubmed.ncbi.nlm.nih.gov/PMC10913623 https://doaj.org/article/869a6111589c49389fce535fe4d4cd90 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20001201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNQqGXkr7dpIsKvbUisvWw3EvZLNmGhYSSNrA3YclyEkjs7XrDkv76juRH2D5yscGSjDQz0oykmW8Q-pCWthAsMUQJRwnPM0eMiw2RUmSFMYl0xsc7n5zK43M-m4t5d-DWdG6V_ZoYFuqitv6M_CDxcW0M9LP6svhJfNYof7vapdDYQjtxApLkI8WnX4dbBI_X3wfKKHnQxB6tjYBWIqD2lSTrDWUUMPv_ZWj-7S_5x6Vp0EXTXfS0MyLxuOX6M_TIVc_R4zat5N0LdBaQRn5BU7yom9Vi6UNXoP6NWwHLr30ccoO9ayj2Xu8XODgVrvM7HNLiNJ9xjpurmy6vFw4AtC_R-fTox-SYdLkTiBU8XhFHS1i4rEhtCUpdGKEKBQNIaWqt5S6VXCYFTYw1RjFurSuccpRaCjtWWjrFXqHtqq7cG4QFd9wZyoGtipfM5lLlLuemLCWQ1dgIxT0Rte2AxX1-i2sdNhhK6pbwGgivA-H1OkIfhzaLFlbjwdqHnjdDTQ-JHT7UywvdzTCtZJZDh2KhMsszsMNK6wQTpeMFt0VGI7Tfc1Z387TR91IVofdDMcwwf22SV66-9XVYCusiF3GEXreCMPSEKc6UEvBztSEiG13dLKmuLgOKd0BkBeMzQp96abrv1_9p8fbhYeyhJ0kQcEYo30fbq-Wtewdm08qM0FY6T0dhhozQzng8-z6D9-HR6bcz-DqRk1E4kIDnCVe_AVOJH9M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFad-BEHCSFe1ZY-DqiV9mZiZ1IqtbvLZqvV8qP4jYydZKvl0VuvsR05428843jmG0Je5LWvlMgcMwo4k2UBzEHqmNaqqJzLNLiQ77y3rweH8stQDdfIrz4XJoRV9nti3KirsQ__yDezkNcm0D6bd5MfLFSNCrerfQmNFhY7sJjjka15u_0J1_dllm19Pvg4YF1VAeaVTGcMeI0q7VXuazR3yilTGah8znPvvYRcS51VPHPeOSOk91CBAc49x7Mcr8EIfO8VclUKLgNXfz5cHvDSUB-gT8wxerNJAzscQyvI0M0wms1XjF-sEfAvx_bv-Mw_Lmmj7du6RW52Tit936LsNlmD0R1yrS1jubhLvkZmk584lE7GzWwyDaky2P8UZgixk5D33NAQikpDlP0RjUGM83JBYxme5g0taXN82tURo5Hw9h45vBSp3ifro_EIHhKqJEhwXCKMjKyFL7UpoZSurjWK1fmEpL0Qre-IzEM9jRMbDzRG21bwFgVvo-DtPCGvlmMmLY3Hhb0_hLVZ9gwU3PHBeHpkO422RhclTihVpvCyQL-v9qCEqkFW0lcFT8hGv7K22xcae47ihDxfNqNGh2uacgTjs9BH5LgPS5Um5EELhOVMhJHCGIUvNysQWZnqasvo-HtkDY8MsOjsJuR1j6bzef1fFo8u_oxn5PrgYG_X7m7v7zwmN7IIdsG43CDrs-kZPEGXbeaeRj2h5NtlK-ZvKCZYUg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gE4gXxDeFAUHiDaKlzUdT3o6P0zhgQsCkvUVN6o5JW-907XQafz1O2h4cDCReE6dK7Th2ZPtnQp7lta-UyBwzCjiTZQHMQeqY1qqonMs0uFDv_HFf7x3I2aE6_KWKP2a7jyHJvqYhoDQ13e6iqnsVN3q3TQPuGkP7wtCAG81Wl8k2jmh8fm1PJrMvs3UkIWD2j8UyF67cMEgRt_8iZ_PPnMnfAqfRHk1vkOuDI0knveRvkkvQ3CJX-taS57fJ54g28h2X0sW87RbLUL6C9KfQodhPQi1yS0N6KA2Z70c0JhauynMaW-O0L2lJ2-PTobcXjSC0d8jB9O3X13ts6J_AvJJpx4DXeHl5lfsaDbtyylQGfyDnufdeQq6lziqeOe-cEdJ7qMAA557jq5XXYMRdstXMG7hPqJIgwXGJojWyFr7UpoRSurrWyFbnE5KOTLR-ABcPPS5ObHxkGG17xltkvI2Mt6uEPF-vWfTQGv-kfhVks6YMsNhxYL48soOWWaOLEjeUKlN4WaAvVntQQtUgK-mrgidkZ5SsHXS1tVmomBTo-ZmEPF1Po5aF0EnZwPws0Igc70ap0oTc6w_CeifCSGGMwo-bjSOysdXNmeb4W0Tyjqis6IAm5MV4mn7u6--8ePB_5E_I1U9vpvbDu_33D8m1LJ59wbjcIVvd8gweoVfVuceD4vwAeWAfLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+postprandial+metabolomics+data+using+multiway+models%3A+a+simulation+study&rft.jtitle=BMC+bioinformatics&rft.au=Lu%2C+Li&rft.au=Shi+Yanrbara+M.+Bakker&rft.au=Hoefsloot%2C+Huub&rft.au=Chawes%2C+Bo&rft.date=2024-03-04&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=25&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-024-05686-w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |