Analyzing postprandial metabolomics data using multiway models: a simulation study

Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 25; no. 1; pp. 94 - 22
Main Authors Li, Lu, Yan, Shi, Bakker, Barbara M., Hoefsloot, Huub, Chawes, Bo, Horner, David, Rasmussen, Morten A., Smilde, Age K., Acar, Evrim
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.03.2024
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-024-05686-w

Cover

Abstract Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
AbstractList Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
BackgroundAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.ResultsWe introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.ConclusionsOur experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Abstract Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data. Results We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups. Conclusions Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.BACKGROUNDAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early diagnosis of metabolic diseases and advancing precision nutrition and medicine. Postprandial metabolomics measurements at several time points from multiple subjects can be arranged as a subjects by metabolites by time points array. Traditional analysis methods are limited in terms of revealing subject groups, related metabolites, and temporal patterns simultaneously from such three-way data.We introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.RESULTSWe introduce an unsupervised multiway analysis approach based on the CANDECOMP/PARAFAC (CP) model for improved analysis of postprandial metabolomics data guided by a simulation study. Because of the lack of ground truth in real data, we generate simulated data using a comprehensive human metabolic model. This allows us to assess the performance of CP models in terms of revealing subject groups and underlying metabolic processes. We study three analysis approaches: analysis of fasting-state data using principal component analysis, T0-corrected data (i.e., data corrected by subtracting fasting-state data) using a CP model and full-dynamic (i.e., full postprandial) data using CP. Through extensive simulations, we demonstrate that CP models capture meaningful and stable patterns from simulated meal challenge data, revealing underlying mechanisms and differences between diseased versus healthy groups.Our experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.CONCLUSIONSOur experiments show that it is crucial to analyze both fasting-state and T0-corrected data for understanding metabolic differences among subject groups. Depending on the nature of the subject group structure, the best group separation may be achieved by CP models of T0-corrected or full-dynamic data. This study introduces an improved analysis approach for postprandial metabolomics data while also shedding light on the debate about correcting baseline values in longitudinal data analysis.
ArticleNumber 94
Author Rasmussen, Morten A.
Acar, Evrim
Chawes, Bo
Horner, David
Li, Lu
Hoefsloot, Huub
Smilde, Age K.
Bakker, Barbara M.
Yan, Shi
Author_xml – sequence: 1
  givenname: Lu
  surname: Li
  fullname: Li, Lu
  email: lu@simula.no
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
– sequence: 2
  givenname: Shi
  surname: Yan
  fullname: Yan, Shi
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
– sequence: 3
  givenname: Barbara M.
  surname: Bakker
  fullname: Bakker, Barbara M.
  organization: Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen
– sequence: 4
  givenname: Huub
  surname: Hoefsloot
  fullname: Hoefsloot, Huub
  organization: Swammerdam Institute for Life Sciences, University of Amsterdam
– sequence: 5
  givenname: Bo
  surname: Chawes
  fullname: Chawes, Bo
  organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen
– sequence: 6
  givenname: David
  surname: Horner
  fullname: Horner, David
  organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen
– sequence: 7
  givenname: Morten A.
  surname: Rasmussen
  fullname: Rasmussen, Morten A.
  organization: Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Department of Food Science, University of Copenhagen
– sequence: 8
  givenname: Age K.
  surname: Smilde
  fullname: Smilde, Age K.
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering, Swammerdam Institute for Life Sciences, University of Amsterdam
– sequence: 9
  givenname: Evrim
  surname: Acar
  fullname: Acar, Evrim
  email: evrim@simula.no
  organization: Department of Data Science and Knowledge Discovery, Simula Metropolitan Center for Digital Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38438850$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFSEUxYmpsX_0C7gwk7hxMwoDzDBuTNO02qSJidE1YeDOkxcGnsD48vz08t602nbRFeRyzi-HnHuKjnzwgNBrgt8TItoPiTSC9zVuWI15K9p6-wydENaRuiGYH927H6PTlNYYk05g_gIdU8GoEByfoG_nXrndH-tX1SakvInKG6tcNUFWQ3BhsjpVRmVVzWkvmmaX7VbtqikYcOljpapky1BlG3yV8mx2L9HzUbkEr27PM_Tj6vL7xZf65uvn64vzm1pzRnINeDQGNO_02BDOBy6MAKM73GmtGXQtaxuDm0EPg6BMazAgAGONqaB4BEHP0PXCNUGt5SbaScWdDMrKwyDElVQxW-1AirZXLSGEi16znop-1MApH4EZpk2PC-vTwtrMw1RSgM9RuQfQhy_e_pSr8FsS3BPaNrQQ3t0SYvg1Q8pyskmDc8pDmJNsetp1mDJOivTtI-k6zLH0sFeVIilv8f57b-5H-pflrrsiEItAx5BShFFqmw89lITWlWhyvyZyWRNZ1kQe1kRui7V5ZL2jP2miiykVsV9B_B_7Cddf-8PSOA
CitedBy_id crossref_primary_10_1007_s11306_024_02128_9
crossref_primary_10_1080_12460125_2024_2371670
crossref_primary_10_1007_s11306_024_02109_y
crossref_primary_10_3390_biom14121561
crossref_primary_10_3390_metabo14100533
crossref_primary_10_3390_metabo15010002
Cites_doi 10.1038/s41598-019-57257-2
10.1002/0470012110
10.1002/hbm.23425
10.1007/s11306-013-0591-0
10.2337/dc11-1593
10.1007/s11306-014-0673-7
10.1016/j.neuron.2018.05.015
10.1007/s11306-011-0320-5
10.1038/s41587-020-0660-7
10.1016/S1081-1206(10)61398-1
10.1073/pnas.0705408104
10.1016/j.isci.2021.102101
10.1186/s12859-019-3333-0
10.1007/BF02310791
10.3389/fnins.2022.861402
10.1038/s41591-020-0934-0
10.3390/nu14030472
10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.CO;2-Y
10.1002/cem.773
10.1016/j.cell.2015.11.001
10.1002/cem.1335
10.1016/0196-6774(90)90014-6
10.1093/bioinformatics/btm210
10.1016/j.chemolab.2010.08.004
10.1016/j.aca.2005.02.042
10.1002/cem.3232
10.1093/ajcn/63.6.911
10.1378/chest.07-0052
10.1002/cem.2895
10.1016/j.chemolab.2004.07.003
10.1093/bioinformatics/bti476
10.1137/07070111X
10.1109/ICASSP40776.2020.9053902
10.1039/b902242b
10.1007/s11306-020-01759-y
10.1109/TKDE.2008.112
10.1016/S0169-7439(97)00032-4
10.1186/1755-8794-6-44
10.1016/0024-3795(77)90069-6
10.1109/MSP.2022.3163870
10.1016/j.conctc.2018.03.008
10.1186/1471-2105-10-52
10.1016/S0899-9007(99)00212-9
10.1145/2915921
10.1002/cem.801
10.1002/sapm192761164
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-024-05686-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 22
ExternalDocumentID oai_doaj_org_article_869a6111589c49389fce535fe4d4cd90
PMC10913623
38438850
10_1186_s12859_024_05686_w
Genre Journal Article
GrantInformation_xml – fundername: Novo Nordisk Fonden
  grantid: NNF19OC0057934; NNF19OC0057934; NNF19OC0057934; NNF19OC0057934
  funderid: http://dx.doi.org/10.13039/501100009708
– fundername: Norges Forskningsråd
  grantid: 300489; 300489; 300489; 300489; 300489
  funderid: http://dx.doi.org/10.13039/501100005416
– fundername: Novo Nordisk Fonden
  grantid: NNF19OC0057934
– fundername: Norges Forskningsråd
  grantid: 300489
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-e0fddec57cf2155b58d8edc707ccc4e76462d02bcbb834ccede8e00c03830fe83
IEDL.DBID 8FG
ISSN 1471-2105
IngestDate Wed Aug 27 01:26:16 EDT 2025
Tue Sep 30 17:09:55 EDT 2025
Fri Sep 05 08:48:42 EDT 2025
Wed Oct 01 16:56:52 EDT 2025
Thu Apr 03 07:02:18 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Wed Oct 01 04:15:44 EDT 2025
Sat Sep 06 07:27:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CANDECOMP/PARAFAC (CP)
Meal challenge test
Whole-body metabolic model
Time-resolved metabolomics data
Tensor factorizations (multiway data analysis)
Postprandial metabolomics data
Principal component analysis (PCA)
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e0fddec57cf2155b58d8edc707ccc4e76462d02bcbb834ccede8e00c03830fe83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2956835608?pq-origsite=%requestingapplication%
PMID 38438850
PQID 2956835608
PQPubID 44065
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_869a6111589c49389fce535fe4d4cd90
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10913623
proquest_miscellaneous_2937703451
proquest_journals_2956835608
pubmed_primary_38438850
crossref_citationtrail_10_1186_s12859_024_05686_w
crossref_primary_10_1186_s12859_024_05686_w
springer_journals_10_1186_s12859_024_05686_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-04
PublicationDateYYYYMMDD 2024-03-04
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2024
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References R Bro (5686_CR40) 2003; 17
L Pellis (5686_CR15) 2012; 8
P Harrington (5686_CR11) 2005; 544
E Acar (5686_CR43) 2011; 25
5686_CR44
AK Smilde (5686_CR49) 2009; 134
K Saito (5686_CR48) 2014; 10
RD Mattes (5686_CR27) 1996; 63
AA Kumar (5686_CR5) 2020; 10
JD Carroll (5686_CR20) 1970; 35
M Thiel (5686_CR13) 2017; 31
KF Petersen (5686_CR45) 2007; 104
J Håstad (5686_CR38) 1990; 11
A Gardlo (5686_CR24) 2016; 12
AH Williams (5686_CR35) 2018; 98
KE Merz (5686_CR46) 2011; 10
M Martin (5686_CR14) 2020; 34
5686_CR55
G Tomasi (5686_CR36) 2005; 75
5686_CR54
5686_CR53
J Twisk (5686_CR26) 2018; 10
5686_CR51
E Acar (5686_CR17) 2009; 21
5686_CR19
JB Kruskal (5686_CR21) 1977; 18
H Bisgaard (5686_CR30) 2004; 93
T Adali (5686_CR39) 2022; 39
E Acar (5686_CR34) 2007; 23
E Müllner (5686_CR8) 2021; 17
G Lépine (5686_CR4) 2022; 14
A Smilde (5686_CR18) 2004
5686_CR22
L Li (5686_CR25) 2022; 23
R Bro (5686_CR42) 2003; 17
A Kahler (5686_CR47) 1999; 15
AL Harte (5686_CR1) 2012; 35
EE Papalexakis (5686_CR33) 2016; 8
AK Smilde (5686_CR10) 2005; 21
RA Harshman (5686_CR41) 1984
C Martino (5686_CR23) 2021; 39
H Kurata (5686_CR29) 2021; 24
SE Berry (5686_CR7) 2020; 26
D Zeevi (5686_CR6) 2015; 163
MK Wojczynski (5686_CR3) 2011; 10
DJ Vis (5686_CR9) 2015; 11
TG Kolda (5686_CR16) 2009; 51
KH Madsen (5686_CR52) 2017; 38
T Jendoubi (5686_CR56) 2020; 21
JH Stroeve (5686_CR31) 2015; 10
E Acar (5686_CR37) 2011; 106
S Wopereis (5686_CR2) 2017; 12
D Vilozni (5686_CR50) 2007; 132
U Thissen (5686_CR12) 2009; 10
S Wopereis (5686_CR28) 2013; 6
FL Hitchcock (5686_CR32) 1927; 6
References_xml – volume: 10
  start-page: 353
  year: 2020
  ident: 5686_CR5
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-57257-2
– volume-title: Multi-Way Analysis: Applications in the Chemical Sciences
  year: 2004
  ident: 5686_CR18
  doi: 10.1002/0470012110
– volume: 38
  start-page: 882
  year: 2017
  ident: 5686_CR52
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23425
– volume: 10
  start-page: 402
  issue: 3
  year: 2014
  ident: 5686_CR48
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0591-0
– volume: 35
  start-page: 375
  issue: 2
  year: 2012
  ident: 5686_CR1
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1593
– volume: 11
  start-page: 50
  issue: 1
  year: 2015
  ident: 5686_CR9
  publication-title: Metabolomics
  doi: 10.1007/s11306-014-0673-7
– volume: 98
  start-page: 1099
  issue: 6
  year: 2018
  ident: 5686_CR35
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.015
– volume: 8
  start-page: 347
  year: 2012
  ident: 5686_CR15
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0320-5
– volume: 39
  start-page: 165
  issue: 2
  year: 2021
  ident: 5686_CR23
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0660-7
– volume: 93
  start-page: 381
  issue: 4
  year: 2004
  ident: 5686_CR30
  publication-title: Ann Allergy Asthma Immunol
  doi: 10.1016/S1081-1206(10)61398-1
– volume: 104
  start-page: 12587
  issue: 31
  year: 2007
  ident: 5686_CR45
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0705408104
– volume: 24
  issue: 2
  year: 2021
  ident: 5686_CR29
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102101
– volume: 21
  start-page: 11
  year: 2020
  ident: 5686_CR56
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-019-3333-0
– ident: 5686_CR51
– volume: 35
  start-page: 283
  issue: 3
  year: 1970
  ident: 5686_CR20
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– ident: 5686_CR54
  doi: 10.3389/fnins.2022.861402
– volume: 26
  start-page: 964
  issue: 6
  year: 2020
  ident: 5686_CR7
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0934-0
– volume: 12
  start-page: 1
  issue: 21
  year: 2017
  ident: 5686_CR2
  publication-title: Genes Nutrit
– volume: 14
  start-page: 472
  issue: 3
  year: 2022
  ident: 5686_CR4
  publication-title: Nutrients
  doi: 10.3390/nu14030472
– ident: 5686_CR55
  doi: 10.1002/(SICI)1099-128X(199905/08)13:3/4<295::AID-CEM547>3.0.CO;2-Y
– volume: 10
  start-page: 785
  issue: 3
  year: 2011
  ident: 5686_CR46
  publication-title: Compr Physiol
– ident: 5686_CR44
– volume: 17
  start-page: 16
  issue: 1
  year: 2003
  ident: 5686_CR42
  publication-title: J Chemom
  doi: 10.1002/cem.773
– volume: 23
  start-page: 1
  issue: 31
  year: 2022
  ident: 5686_CR25
  publication-title: BMC Bioinf
– volume: 12
  start-page: 1
  issue: 12
  year: 2016
  ident: 5686_CR24
  publication-title: Metabolomics
– volume: 163
  start-page: 1079
  issue: 5
  year: 2015
  ident: 5686_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.001
– ident: 5686_CR19
– volume: 25
  start-page: 67
  issue: 2
  year: 2011
  ident: 5686_CR43
  publication-title: J Chemom
  doi: 10.1002/cem.1335
– volume: 11
  start-page: 644
  issue: 4
  year: 1990
  ident: 5686_CR38
  publication-title: J Algorithms
  doi: 10.1016/0196-6774(90)90014-6
– volume: 23
  start-page: 10
  issue: 13
  year: 2007
  ident: 5686_CR34
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm210
– volume: 106
  start-page: 41
  issue: 1
  year: 2011
  ident: 5686_CR37
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2010.08.004
– volume: 544
  start-page: 118
  issue: 1–2
  year: 2005
  ident: 5686_CR11
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2005.02.042
– volume: 34
  start-page: 3232
  issue: 6
  year: 2020
  ident: 5686_CR14
  publication-title: J Chemom
  doi: 10.1002/cem.3232
– volume: 63
  start-page: 911
  issue: 6
  year: 1996
  ident: 5686_CR27
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/63.6.911
– volume: 132
  start-page: 497
  issue: 2
  year: 2007
  ident: 5686_CR50
  publication-title: Chest
  doi: 10.1378/chest.07-0052
– volume: 31
  start-page: 2895
  issue: 6
  year: 2017
  ident: 5686_CR13
  publication-title: J Chemom
  doi: 10.1002/cem.2895
– volume: 75
  start-page: 163
  issue: 2
  year: 2005
  ident: 5686_CR36
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2004.07.003
– volume: 21
  start-page: 3043
  issue: 13
  year: 2005
  ident: 5686_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti476
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  ident: 5686_CR16
  publication-title: SIAM Rev
  doi: 10.1137/07070111X
– ident: 5686_CR53
  doi: 10.1109/ICASSP40776.2020.9053902
– volume: 134
  start-page: 2281
  issue: 11
  year: 2009
  ident: 5686_CR49
  publication-title: Analyst
  doi: 10.1039/b902242b
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 5686_CR8
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-01759-y
– volume: 21
  start-page: 6
  issue: 1
  year: 2009
  ident: 5686_CR17
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.112
– volume: 10
  start-page: 1
  issue: 181
  year: 2011
  ident: 5686_CR3
  publication-title: Lipids Health Dis
– ident: 5686_CR22
  doi: 10.1016/S0169-7439(97)00032-4
– volume: 6
  start-page: 44
  year: 2013
  ident: 5686_CR28
  publication-title: BMC Med Genom
  doi: 10.1186/1755-8794-6-44
– volume: 10
  start-page: 1
  issue: 3
  year: 2015
  ident: 5686_CR31
  publication-title: Genes Nutrit
– volume: 18
  start-page: 95
  issue: 2
  year: 1977
  ident: 5686_CR21
  publication-title: Linear Algebra Appl
  doi: 10.1016/0024-3795(77)90069-6
– volume: 39
  start-page: 8
  issue: 4
  year: 2022
  ident: 5686_CR39
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2022.3163870
– volume: 10
  start-page: 80
  year: 2018
  ident: 5686_CR26
  publication-title: Contemp Clin Trials Commun
  doi: 10.1016/j.conctc.2018.03.008
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  ident: 5686_CR12
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-10-52
– volume: 15
  start-page: 819
  issue: 11–12
  year: 1999
  ident: 5686_CR47
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(99)00212-9
– volume: 8
  start-page: 1
  issue: 2
  year: 2016
  ident: 5686_CR33
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/2915921
– volume: 17
  start-page: 274
  issue: 5
  year: 2003
  ident: 5686_CR40
  publication-title: J Chemom
  doi: 10.1002/cem.801
– volume: 6
  start-page: 164
  issue: 1
  year: 1927
  ident: 5686_CR32
  publication-title: J Math Phys
  doi: 10.1002/sapm192761164
– start-page: 602
  volume-title: An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques in Research Methods for Multimode Data Analysis
  year: 1984
  ident: 5686_CR41
SSID ssj0017805
Score 2.471978
Snippet Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for...
Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for early...
BackgroundAnalysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing biomarkers for...
Abstract Background Analysis of time-resolved postprandial metabolomics data can improve the understanding of metabolic mechanisms, potentially revealing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms Algorithms
Bioinformatics
Biomarkers
Biomedical and Life Sciences
CANDECOMP/PARAFAC (CP)
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data analysis
Diabetes
Enzyme kinetics
Fasting
Glucose
Insulin resistance
Life Sciences
Meal challenge test
Metabolic disorders
Metabolism
Metabolites
Metabolomics
Microarrays
Musculoskeletal system
Ordinary differential equations
Performance assessment
Postprandial metabolomics data
Principal component analysis (PCA)
Principal components analysis
Simulation
Tensor factorizations (multiway data analysis)
Time-resolved metabolomics data
Variance analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9F2naVCht1ZEth4e55aEhlBoD6WB3IQlj9tA4l1ihyX99R3J9rbb56VXSzLjeXhm0Mw3jL0q29AYVXgBBqXQdYXCY-6FtaZqvC8s-tjv_P6DPT3T787N-Q-jvmJN2AgPPDJuH2xVWzJIA1XQFbnXNqBRpkXd6NBUKVsnNzYnU9P9QUTqn1tkwO73ecRpE-SPBDl8sGK14YYSWv_vQsxfKyV_ui5NXujkPrs3hY_8cCT7AbuD3UO2PQ6UvH3EPiaMka90lC8X_bC8jk0rtP8KBxL2ZexA7nksCuWx3v0zT-WEq_qWp4E4_QGveX9xNU304gl69jE7O3n76fhUTFMTRDA6HwTKln5ZwZShJXduvIEG6ANKWYYQNJZW26KRhQ_eg9IhYIOAUgZJuapsEdQTttUtOnzGuNGo0UtNAgXdqlBbqLHWvm1JIuBDxvKZiS5MkOJxssWlS6kFWDcy3hHjXWK8W2Xs9frMcgTU-Ovuoyib9c4Ihp0ekIq4SUXcv1QkY7uzZN1kob0rYp-kongPMvZyvUy2FS9M6g4XN3GPKumPqE2esaejIqwpUaAVgKGXw4aKbJC6udJdfEn43QmLlcLOjL2Ztek7XX_mxc7_4MVzdrdIZqCE1Ltsa7i-wRcUVg1-L1nQN3ONIRc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9qRfBF_Da2ygrii65ush_ZCCIqliLUB_Ggb0t2M6mFa-56Sbmef72zm-TK6dnX7AeT2ZmdWWbmN4S8zGtfKZE5ZhRwJssCmIPUMa1VUTmXaXCh3vnouz6cyG_H6niHjOm2AwPbrU-70E9qspi-vTxffUSF_xAV3uh3bRpQ2BhaG4bm3Gi2fDU_Z6GxVAjADl02bpCbaKyyIPhH8irQECD9x1qarVtt2KsI67_NF_03pfKvuGo0Vwd3yZ3Bz6SfesG4R3aguU9u9Z0nVw_IjwhG8huX0vms7eaLUN2C88-gQ6mYhlLllobsURoS409ozDtclisaO-e072lJ29OzofUXjRi1D8nk4OvPL4dsaK_AvJJpx4DXeLd5lfsa7b5yylQGfyDnufdeQq6lziqeOe-cEdJ7qMAA557jo5bXYMQjstvMGnhCqJIgwXGJJ29kLXypTQmldHWtka3OJyQdmWj9gD0eWmBMbXyDGG17xltkvI2Mt8uEvF6vmffIG9fO_hzOZj0zoGbHD7PFiR2U0BpdlEhQqkzhZYGuWu1BCVWDrKSvCp6Q_fFk7SiJNgsFlQIdQ5OQF-thVMIQWSkbmF2EOSLHq1OqNCGPe0FYUyKMFMYo3NxsiMgGqZsjzemvCPQdQVvRP03Im1Garuj6Py-eXv8be-R2FgVcMC73yW63uIBn6Fl17nnUjT-ZDiQb
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9VAEB-0IngRv5taZQVvurjJfmTjTR-WIuhBLPS2ZDcTLbR5jyblUf_6zm7yok-r4DU7GzbzsTNhZn4D8LJsQ6Nl4bnVKLiqK-Qec8-N0VXjfWHQx37nT5_N4ZH6eKyPJ5ic2Avza_4-t-ZNn0eENU6ehJOrtoavb8ItTRdvLN9bmMWcMYjY_JummGv3bTmehM9_XVD5Z23kbwnS5HcO7sHdKWBk70YJ34cb2D2A2-MIycuH8CWhivygrWy17IfVeWxTIfozHEi8p7HnuGexDJTFCvdvLBUQrutLlkbg9G9ZzfqTs2mGF0tgs4_g6ODD18Uhn-Yk8KBVPnAULV1SQZehJQeuvbaNpQ8oRRlCUFgaZYpGFD54b6UKARu0KEQQ9HcqWrTyMex0yw53gWmFCr1QJEKrWhlqY2uslW9bQ2z1IYN8w0QXJhDxOMvi1KWfCWvcyHhHjHeJ8W6dwat5z2qE0Pgn9fsom5kywl-nB6QVbrImZ01V04FybaugKoq52oBa6hZVo0JTiQz2N5J1k032roidkZIiPJvBi3mZrCmmSOoOlxeRRpZ0ByqdZ_BkVIT5JNIqaa2ml9stFdk66vZKd_I9IXYn9FUKNDN4vdGmn-f6Oy_2_o_8KdwpksJLLtQ-7AznF_iMQqbBP0-2cgVQexKC
  priority: 102
  providerName: Springer Nature
Title Analyzing postprandial metabolomics data using multiway models: a simulation study
URI https://link.springer.com/article/10.1186/s12859-024-05686-w
https://www.ncbi.nlm.nih.gov/pubmed/38438850
https://www.proquest.com/docview/2956835608
https://www.proquest.com/docview/2937703451
https://pubmed.ncbi.nlm.nih.gov/PMC10913623
https://doaj.org/article/869a6111589c49389fce535fe4d4cd90
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNQqGXkr7dpIsKvbUisvWw3EvZLNmGhYSSNrA3YclyEkjs7XrDkv76juRH2D5yscGSjDQz0oykmW8Q-pCWthAsMUQJRwnPM0eMiw2RUmSFMYl0xsc7n5zK43M-m4t5d-DWdG6V_ZoYFuqitv6M_CDxcW0M9LP6svhJfNYof7vapdDYQjtxApLkI8WnX4dbBI_X3wfKKHnQxB6tjYBWIqD2lSTrDWUUMPv_ZWj-7S_5x6Vp0EXTXfS0MyLxuOX6M_TIVc_R4zat5N0LdBaQRn5BU7yom9Vi6UNXoP6NWwHLr30ccoO9ayj2Xu8XODgVrvM7HNLiNJ9xjpurmy6vFw4AtC_R-fTox-SYdLkTiBU8XhFHS1i4rEhtCUpdGKEKBQNIaWqt5S6VXCYFTYw1RjFurSuccpRaCjtWWjrFXqHtqq7cG4QFd9wZyoGtipfM5lLlLuemLCWQ1dgIxT0Rte2AxX1-i2sdNhhK6pbwGgivA-H1OkIfhzaLFlbjwdqHnjdDTQ-JHT7UywvdzTCtZJZDh2KhMsszsMNK6wQTpeMFt0VGI7Tfc1Z387TR91IVofdDMcwwf22SV66-9XVYCusiF3GEXreCMPSEKc6UEvBztSEiG13dLKmuLgOKd0BkBeMzQp96abrv1_9p8fbhYeyhJ0kQcEYo30fbq-Wtewdm08qM0FY6T0dhhozQzng8-z6D9-HR6bcz-DqRk1E4kIDnCVe_AVOJH9M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFad-BEHCSFe1ZY-DqiV9mZiZ1IqtbvLZqvV8qP4jYydZKvl0VuvsR05428843jmG0Je5LWvlMgcMwo4k2UBzEHqmNaqqJzLNLiQ77y3rweH8stQDdfIrz4XJoRV9nti3KirsQ__yDezkNcm0D6bd5MfLFSNCrerfQmNFhY7sJjjka15u_0J1_dllm19Pvg4YF1VAeaVTGcMeI0q7VXuazR3yilTGah8znPvvYRcS51VPHPeOSOk91CBAc49x7Mcr8EIfO8VclUKLgNXfz5cHvDSUB-gT8wxerNJAzscQyvI0M0wms1XjF-sEfAvx_bv-Mw_Lmmj7du6RW52Tit936LsNlmD0R1yrS1jubhLvkZmk584lE7GzWwyDaky2P8UZgixk5D33NAQikpDlP0RjUGM83JBYxme5g0taXN82tURo5Hw9h45vBSp3ifro_EIHhKqJEhwXCKMjKyFL7UpoZSurjWK1fmEpL0Qre-IzEM9jRMbDzRG21bwFgVvo-DtPCGvlmMmLY3Hhb0_hLVZ9gwU3PHBeHpkO422RhclTihVpvCyQL-v9qCEqkFW0lcFT8hGv7K22xcae47ihDxfNqNGh2uacgTjs9BH5LgPS5Um5EELhOVMhJHCGIUvNysQWZnqasvo-HtkDY8MsOjsJuR1j6bzef1fFo8u_oxn5PrgYG_X7m7v7zwmN7IIdsG43CDrs-kZPEGXbeaeRj2h5NtlK-ZvKCZYUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gE4gXxDeFAUHiDaKlzUdT3o6P0zhgQsCkvUVN6o5JW-907XQafz1O2h4cDCReE6dK7Th2ZPtnQp7lta-UyBwzCjiTZQHMQeqY1qqonMs0uFDv_HFf7x3I2aE6_KWKP2a7jyHJvqYhoDQ13e6iqnsVN3q3TQPuGkP7wtCAG81Wl8k2jmh8fm1PJrMvs3UkIWD2j8UyF67cMEgRt_8iZ_PPnMnfAqfRHk1vkOuDI0knveRvkkvQ3CJX-taS57fJ54g28h2X0sW87RbLUL6C9KfQodhPQi1yS0N6KA2Z70c0JhauynMaW-O0L2lJ2-PTobcXjSC0d8jB9O3X13ts6J_AvJJpx4DXeHl5lfsaDbtyylQGfyDnufdeQq6lziqeOe-cEdJ7qMAA557jq5XXYMRdstXMG7hPqJIgwXGJojWyFr7UpoRSurrWyFbnE5KOTLR-ABcPPS5ObHxkGG17xltkvI2Mt6uEPF-vWfTQGv-kfhVks6YMsNhxYL48soOWWaOLEjeUKlN4WaAvVntQQtUgK-mrgidkZ5SsHXS1tVmomBTo-ZmEPF1Po5aF0EnZwPws0Igc70ap0oTc6w_CeifCSGGMwo-bjSOysdXNmeb4W0Tyjqis6IAm5MV4mn7u6--8ePB_5E_I1U9vpvbDu_33D8m1LJ59wbjcIVvd8gweoVfVuceD4vwAeWAfLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+postprandial+metabolomics+data+using+multiway+models%3A+a+simulation+study&rft.jtitle=BMC+bioinformatics&rft.au=Lu%2C+Li&rft.au=Shi+Yanrbara+M.+Bakker&rft.au=Hoefsloot%2C+Huub&rft.au=Chawes%2C+Bo&rft.date=2024-03-04&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=25&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-024-05686-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon