A time-correlated single photon counting SPAD array camera with a bespoke data-processing algorithm for lightsheet fluorescence lifetime imaging (FLIM) and FLIM videos

A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 7247 - 17
Main Authors Nedbal, Jakub, Mattioli Della Rocca, Francesco, Ivanova, Iveta T., Allan, Andrew, Graham, Jeremy, Walker, Richard, Henderson, Robert K., Suhling, Klaus
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-56122-1

Cover

More Information
Summary:A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128 pixels, each integrating a single SPAD and a time-to-digital converter. Jointly, they produced a stream of single-photon images of photon arrival times with ≈ 38 ps accuracy. The photon arrival times were subject to systematic delays and nonlinearities, which were corrected by a Monte-Carlo algorithm. The SPAD camera was then applied to FLIM where histogramming the resulting photon arrival times in each pixel resulted in decays compatible with common data processing pipelines for fluorescence lifetime analysis. The capabilities of the TCSPC camera-based FLIM microscope were demonstrated by imaging living unicellular photosynthetic algae and artificial lipid vesicles. Epi-fluorescence illumination enabled rapid fluorescence lifetime imaging of living cells and selective-plane illumination enabled 3-dimensional FLIM of stationary samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-56122-1