Data imbalance in cardiac health diagnostics using CECG-GAN

Heart disease is the world’s leading cause of death. Diagnostic models based on electrocardiograms (ECGs) are often limited by the scarcity of high-quality data and issues of data imbalance. To address these challenges, we propose a conditional generative adversarial network (CECG-GAN). This strateg...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 14767 - 16
Main Authors Yang, Yang, Lan, Tianyu, Wang, Yang, Li, Fengtian, Liu, Liyan, Huang, Xupeng, Gao, Fei, Jiang, Shuhua, Zhang, Zhijun, Chen, Xing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-65619-8

Cover

More Information
Summary:Heart disease is the world’s leading cause of death. Diagnostic models based on electrocardiograms (ECGs) are often limited by the scarcity of high-quality data and issues of data imbalance. To address these challenges, we propose a conditional generative adversarial network (CECG-GAN). This strategy enables the generation of samples that closely approximate the distribution of ECG data. Additionally, CECG-GAN addresses waveform jitter, slow processing speeds, and dataset imbalance issues through the integration of a transformer architecture. We evaluated this approach using two datasets: MIT-BIH and CSPC2020. The experimental results demonstrate that CECG-GAN achieves outstanding performance metrics. Notably, the percentage root mean square difference (PRD) reached 55.048, indicating a high degree of similarity between generated and actual ECG waveforms. Additionally, the Fréchet distance (FD) was approximately 1.139, the root mean square error (RMSE) registered at 0.232, and the mean absolute error (MAE) was recorded at 0.166.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-65619-8