A knowledge-inherited learning for intelligent metasurface design and assembly

Recent breakthroughs in deep learning have ushered in an essential tool for optics and photonics, recurring in various applications of material design, system optimization, and automation control. Deep learning-enabled on-demand metasurface design has been the subject of extensive expansion, as it c...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 12; no. 1; pp. 82 - 11
Main Authors Jia, Yuetian, Qian, Chao, Fan, Zhixiang, Cai, Tong, Li, Er-Ping, Chen, Hongsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.03.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2047-7538
2095-5545
2047-7538
DOI10.1038/s41377-023-01131-4

Cover

More Information
Summary:Recent breakthroughs in deep learning have ushered in an essential tool for optics and photonics, recurring in various applications of material design, system optimization, and automation control. Deep learning-enabled on-demand metasurface design has been the subject of extensive expansion, as it can alleviate the time-consuming, low-efficiency, and experience-orientated shortcomings in conventional numerical simulations and physics-based methods. However, collecting samples and training neural networks are fundamentally confined to predefined individual metamaterials and tend to fail for large problem sizes. Inspired by object-oriented C++ programming, we propose a knowledge-inherited paradigm for multi-object and shape-unbound metasurface inverse design. Each inherited neural network carries knowledge from the “parent” metasurface and then is freely assembled to construct the “offspring” metasurface; such a process is as simple as building a container-type house. We benchmark the paradigm by the free design of aperiodic and periodic metasurfaces, with accuracies that reach 86.7%. Furthermore, we present an intelligent origami metasurface to facilitate compatible and lightweight satellite communication facilities. Our work opens up a new avenue for automatic metasurface design and leverages the assemblability to broaden the adaptability of intelligent metadevices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-023-01131-4