Smart structural health monitoring (SHM) system for on-board localization of defects in pipes using torsional ultrasonic guided waves

Most reported research for monitoring health of pipelines using ultrasonic guided waves (GW) typically utilize bulky piezoelectric transducer rings and laboratory-grade ultrasonic non-destructive testing (NDT) equipment. Consequently, the translation of these approaches from laboratory settings to f...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 24455 - 15
Main Authors Patil, Sheetal, Banerjee, Sauvik, Tallur, Siddharth
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-76236-w

Cover

More Information
Summary:Most reported research for monitoring health of pipelines using ultrasonic guided waves (GW) typically utilize bulky piezoelectric transducer rings and laboratory-grade ultrasonic non-destructive testing (NDT) equipment. Consequently, the translation of these approaches from laboratory settings to field-deployable systems for real-time structural health monitoring (SHM) becomes challenging. In this work, we present an innovative algorithm for damage identification and localization in pipes, implemented on a compact FPGA-based smart GW-SHM system. The custom-designed board, featuring a Xilinx Artix-7 FPGA and front-end electronics, is capable of actuating the PZT thickness shear mode transducers, data acquisition and recording from PZT sensors and generating a damage index (DI) map for localizing the damage on the structure. The algorithm is a variation of the common source method adapted for cylindrical geometry. The utility of the algorithm is demonstrated for detection and localization of defects such as notch and mass loading on a steel pipe, through extensive finite element (FE) method simulations. Experimental results obtained using a C-clamp for applying mass loading on the pipe show good agreement with the FE simulations. The localization error values for experimental data analysed using C code on a processor implemented on the FPGA are consistent with algorithm results generated on a computer running Python code. The system presented in this study is suitable for a wide range of GW-SHM applications, especially in cost-sensitive scenarios that benefit from on-node signal processing over cloud-based solutions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-76236-w