Smart structural health monitoring (SHM) system for on-board localization of defects in pipes using torsional ultrasonic guided waves
Most reported research for monitoring health of pipelines using ultrasonic guided waves (GW) typically utilize bulky piezoelectric transducer rings and laboratory-grade ultrasonic non-destructive testing (NDT) equipment. Consequently, the translation of these approaches from laboratory settings to f...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 24455 - 15 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
18.10.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-76236-w |
Cover
| Summary: | Most reported research for monitoring health of pipelines using ultrasonic guided waves (GW) typically utilize bulky piezoelectric transducer rings and laboratory-grade ultrasonic non-destructive testing (NDT) equipment. Consequently, the translation of these approaches from laboratory settings to field-deployable systems for real-time structural health monitoring (SHM) becomes challenging. In this work, we present an innovative algorithm for damage identification and localization in pipes, implemented on a compact FPGA-based smart GW-SHM system. The custom-designed board, featuring a Xilinx Artix-7 FPGA and front-end electronics, is capable of actuating the PZT thickness shear mode transducers, data acquisition and recording from PZT sensors and generating a damage index (DI) map for localizing the damage on the structure. The algorithm is a variation of the common source method adapted for cylindrical geometry. The utility of the algorithm is demonstrated for detection and localization of defects such as notch and mass loading on a steel pipe, through extensive finite element (FE) method simulations. Experimental results obtained using a C-clamp for applying mass loading on the pipe show good agreement with the FE simulations. The localization error values for experimental data analysed using C code on a processor implemented on the FPGA are consistent with algorithm results generated on a computer running Python code. The system presented in this study is suitable for a wide range of GW-SHM applications, especially in cost-sensitive scenarios that benefit from on-node signal processing over cloud-based solutions. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-76236-w |