Experimental and simulation study of inert gas mixture inhibiting coal spontaneous combustion
To explore the mechanism of inhibiting spontaneous combustion of coal by mixed gases, the low-temperature oxidation characteristics of coal under different components of mixed gases were analyzed. ESR and FTIR experiments were used to investigate the effects of different gas mixtures on the activity...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 4305 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-53979-0 |
Cover
Summary: | To explore the mechanism of inhibiting spontaneous combustion of coal by mixed gases, the low-temperature oxidation characteristics of coal under different components of mixed gases were analyzed. ESR and FTIR experiments were used to investigate the effects of different gas mixtures on the activity of coal during low-temperature oxidation and the oxidation reaction of coal surface functional groups. The mechanism of chemical oxygen inhibition of mixed gas was studied by density functional theory. The results show that the larger the CO
2
component in the mixed gas, the higher the ability to inhibit coal oxidation. The concentration of free radicals in coal under dry air condition is higher than that under inert mixed gas condition during oxidation heating at 30–230 °C. The oxidation ability of –CH
3
, –OH and oxygen-containing functional groups in the mixed gas reaction is inhibited. Through quantum chemistry calculation, it is found that the mixed gas increases the activation energy of free radicals and reduces the heat release of the reaction. This study provides theoretical reference for coal mine thermal disaster. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-53979-0 |