ST-V-Net: incorporating shape prior into convolutional neural networks for proximal femur segmentation
We aim to develop a deep-learning-based method for automatic proximal femur segmentation in quantitative computed tomography (QCT) images. We proposed a spatial transformation V-Net (ST-V-Net), which contains a V-Net and a spatial transform network (STN) to extract the proximal femur from QCT images...
Saved in:
Published in | Complex & intelligent systems Vol. 9; no. 3; pp. 2747 - 2758 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2199-4536 2198-6053 2198-6053 |
DOI | 10.1007/s40747-021-00427-5 |
Cover
Summary: | We aim to develop a deep-learning-based method for automatic proximal femur segmentation in quantitative computed tomography (QCT) images. We proposed a spatial transformation V-Net (ST-V-Net), which contains a V-Net and a spatial transform network (STN) to extract the proximal femur from QCT images. The STN incorporates a shape prior into the segmentation network as a constraint and guidance for model training, which improves model performance and accelerates model convergence. Meanwhile, a multi-stage training strategy is adopted to fine-tune the weights of the ST-V-Net. We performed experiments using a QCT dataset which included 397 QCT subjects. During the experiments for the entire cohort and then for male and female subjects separately, 90% of the subjects were used in ten-fold stratified cross-validation for training and the rest of the subjects were used to evaluate the performance of models. In the entire cohort, the proposed model achieved a Dice similarity coefficient (DSC) of 0.9888, a sensitivity of 0.9966 and a specificity of 0.9988. Compared with V-Net, the Hausdorff distance was reduced from 9.144 to 5.917 mm, and the average surface distance was reduced from 0.012 to 0.009 mm using the proposed ST-V-Net. Quantitative evaluation demonstrated excellent performance of the proposed ST-V-Net for automatic proximal femur segmentation in QCT images. In addition, the proposed ST-V-Net sheds light on incorporating shape prior to segmentation to further improve the model performance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2199-4536 2198-6053 2198-6053 |
DOI: | 10.1007/s40747-021-00427-5 |