Painting with light-powered bacteria

Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structur...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 768 - 7
Main Authors Arlt, Jochen, Martinez, Vincent A., Dawson, Angela, Pilizota, Teuta, Poon, Wilson C. K.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.02.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-018-03161-8

Cover

More Information
Summary:Self-assembly is a promising route for micro- and nano-fabrication with potential to revolutionise many areas of technology, including personalised medicine. Here we demonstrate that external control of the swimming speed of microswimmers can be used to self assemble reconfigurable designer structures in situ. We implement such ‘smart templated active self assembly’ in a fluid environment by using spatially patterned light fields to control photon-powered strains of motile Escherichia coli bacteria. The physics and biology governing the sharpness and formation speed of patterns is investigated using a bespoke strain designed to respond quickly to changes in light intensity. Our protocol provides a distinct paradigm for self-assembly of structures on the 10 μm to mm scale. The ability to generate microscale patterns and control microswimmers may be useful for engineering smart materials. Here Arlt et al. use genetically modified bacteria with fast response to changes in light intensity to produce light-induced patterns.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03161-8