Paper-based genetic assays with bioconjugated gold nanorods and an automated readout pipeline

Paper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may l...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 6223 - 12
Main Authors Borri, Claudia, Centi, Sonia, Chioccioli, Sofia, Bogani, Patrizia, Micheletti, Filippo, Gai, Marco, Grandi, Paolo, Laschi, Serena, Tona, Francesco, Barucci, Andrea, Zoppetti, Nicola, Pini, Roberto, Ratto, Fulvio
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-10227-7

Cover

More Information
Summary:Paper-based biosensors featuring immunoconjugated gold nanoparticles have gained extraordinary momentum in recent times as the platform of choice in key cases of field applications, including the so-called rapid antigen tests for SARS-CoV-2. Here, we propose a revision of this format, one that may leverage on the most recent advances in materials science and data processing. In particular, we target an amplifiable DNA rather than a protein analyte, and we replace gold nanospheres with anisotropic nanorods, which are intrinsically brighter by a factor of ~ 10, and multiplexable. By comparison with a gold-standard method for dot-blot readout with digoxigenin, we show that gold nanorods entail much faster and easier processing, at the cost of a higher limit of detection (from below 1 to 10 ppm in the case of plasmid DNA containing a target transgene, in our current setup). In addition, we test a complete workflow to acquire and process photographs of dot-blot membranes with custom-made hardware and regression tools, as a strategy to gain more analytical sensitivity and potential for quantification. A leave-one-out approach for training and validation with as few as 36 sample instances already improves the limit of detection reached by the naked eye by a factor around 2. Taken together, we conjecture that the synergistic combination of new materials and innovative tools for data processing may bring the analytical sensitivity of paper-based biosensors to approach the level of lab-grade molecular tests.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-10227-7