Magnetic field amplification driven by the gyro motion of charged particles
Spontaneous magnetic field generation plays important role in laser-plasma interactions. Strong quasi-static magnetic fields affect the thermal conductivity and the plasma dynamics, particularly in the case of ultra intense laser where the magnetic part of Lorentz force becomes as significant as the...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 23592 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.12.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-02944-2 |
Cover
Summary: | Spontaneous magnetic field generation plays important role in laser-plasma interactions. Strong quasi-static magnetic fields affect the thermal conductivity and the plasma dynamics, particularly in the case of ultra intense laser where the magnetic part of Lorentz force becomes as significant as the electric part. Kinetic simulations of giga-gauss magnetic field amplification via a laser irradiated microtube structure reveal the dynamics of charged particle implosions and the mechanism of magnetic field growth. A giga-gauss magnetic field is generated and amplified with the opposite polarity to the seed magnetic field. The spot size of the field is comparable to the laser wavelength, and the lifetime is hundreds of femtoseconds. An analytical model is presented to explain the underlying physics. This study should aid in designing future experiments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-02944-2 |