Deconvolving mutational patterns of poliovirus outbreaks reveals its intrinsic fitness landscape

Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements....

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 377 - 13
Main Authors Quadeer, Ahmed A., Barton, John P., Chakraborty, Arup K., McKay, Matthew R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-019-14174-2

Cover

More Information
Summary:Vaccination has essentially eradicated poliovirus. Yet, its mutation rate is higher than that of viruses like HIV, for which no effective vaccine exists. To investigate this, we infer a fitness model for the poliovirus viral protein 1 (vp1), which successfully predicts in vitro fitness measurements. This is achieved by first developing a probabilistic model for the prevalence of vp1 sequences that enables us to isolate and remove data that are subject to strong vaccine-derived biases. The intrinsic fitness constraints derived for vp1, a capsid protein subject to antibody responses, are compared with those of analogous HIV proteins. We find that vp1 evolution is subject to tighter constraints, limiting its ability to evade vaccine-induced immune responses. Our analysis also indicates that circulating poliovirus strains in unimmunized populations serve as a reservoir that can seed outbreaks in spatio-temporally localized sub-optimally immunized populations. Poliovirus has a higher mutation rate than HIV, yet has been almost eradicated by vaccination while an effective vaccine against HIV does not exist. Here, the authors develop a fitness model for poliovirus viral protein 1 to show that it is subject to stringent evolutionary constraints that limit its ability to avoid vaccine-induced immune responses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-14174-2