Galectin-1 Accelerates Wound Healing by Regulating the Neuropilin-1/Smad3/NOX4 Pathway and ROS Production in Myofibroblasts
Myofibroblasts have a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a β-galactose-binding lectin involved in many physiological functions, induces myofibroblast activation;...
Saved in:
Published in | Journal of investigative dermatology Vol. 135; no. 1; pp. 258 - 268 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0022-202X 1523-1747 1523-1747 |
DOI | 10.1038/jid.2014.288 |
Cover
Summary: | Myofibroblasts have a key role in wound healing by secreting growth factors and chemoattractants to create new substrates and proteins in the extracellular matrix. We have found that galectin-1, a β-galactose-binding lectin involved in many physiological functions, induces myofibroblast activation; however, the mechanism remains unclear. Here, we reveal that galectin-1-null (Lgals1−/−) mice exhibited a delayed cutaneous wound healing response. Galectin-1 induced myofibroblast activation, migration, and proliferation by triggering intracellular reactive oxygen species (ROS) production. A ROS-producing protein, NADPH oxidase 4 (NOX4), was upregulated by galectin-1 through the neuropilin-1/Smad3 signaling pathway in myofibroblasts. Subcutaneous injection of galectin-1 into wound areas accelerated the healing of general and pathological (streptozotocin-induced diabetes mellitus) wounds and decreased the mortality of diabetic mice with skin wounds. These findings indicate that galectin-1 is a key regulator of wound repair that has therapeutic potential for pathological or imperfect wound healing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-202X 1523-1747 1523-1747 |
DOI: | 10.1038/jid.2014.288 |