Myeloid-associated differentiation marker is a novel SP-A-associated transmembrane protein whose expression on airway epithelial cells correlates with asthma severity

Surfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lys...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 23392 - 15
Main Authors Dy, Alane Blythe C., Langlais, Paul R., Barker, Natalie K., Addison, Kenneth J., Tanyaratsrisakul, Sasipa, Boitano, Scott, Christenson, Stephanie A., Kraft, Monica, Meyers, Deborah, Bleecker, Eugene R., Li, Xingnan, Ledford, Julie G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-02869-w

Cover

More Information
Summary:Surfactant protein A (SP-A) is well-known for its protective role in pulmonary immunity. Previous studies from our group have shown that SP-A mediates eosinophil activities, including degranulation and apoptosis. In order to identify potential binding partners on eosinophils for SP-A, eosinophil lysates were subjected to SP-A pull-down and tandem mass spectrometry (MS/MS) analysis. We identified one membrane-bound protein, myeloid-associated differentiation marker (MYADM), as a candidate SP-A binding partner. Blocking MYADM on mouse and human eosinophils ex vivo prevented SP-A from inducing apoptosis; blocking MYADM in vivo led to increased persistence of eosinophilia and airway hyper-responsiveness in an ovalbumin (OVA) allergy model and increased airways resistance and mucus production in a house dust mite (HDM) asthma model. Examination of a subset of participants in the Severe Asthma Research Program (SARP) cohort revealed a significant association between epithelial expression of MYADM in asthma patients and parameters of airway inflammation, including: peripheral blood eosinophilia, exhaled nitric oxide (FeNO) and the number of exacerbations in the past 12 months. Taken together, our studies provide the first evidence of MYADM as a novel SP-A-associated protein that is necessary for SP-A to induce eosinophil apoptosis and we bring to light the potential importance of this previously unrecognized transmembrane protein in patients with asthma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-02869-w