The Androgen and Progesterone Receptors Regulate Distinct Gene Networks and Cellular Functions in Decidualizing Endometrium

Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational mo...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 149; no. 9; pp. 4462 - 4474
Main Authors Cloke, Brianna, Huhtinen, Kaisa, Fusi, Luca, Kajihara, Takeshi, Yliheikkilä, Maria, Ho, Ka-Kei, Teklenburg, Gijs, Lavery, Stuart, Jones, Marius C., Trew, Geoffrey, Kim, J. Julie, Lam, Eric W.-F., Cartwright, Judith E., Poutanen, Matti, Brosens, Jan J.
Format Journal Article
LanguageEnglish
Published Bethesda, MD Oxford University Press 01.09.2008
Endocrine Society
Subjects
Online AccessGet full text
ISSN0013-7227
1945-7170
DOI10.1210/en.2008-0356

Cover

More Information
Summary:Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/β-catenin, TGFβ/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2008-0356