Flexible, highly efficient all-polymer solar cells

All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-pol...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 6; no. 1; p. 8547
Main Authors Kim, Taesu, Kim, Jae-Han, Kang, Tae Eui, Lee, Changyeon, Kang, Hyunbum, Shin, Minkwan, Wang, Cheng, Ma, Biwu, Jeong, Unyong, Kim, Taek-Soo, Kim, Bumjoon J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.10.2015
Nature Publishing Group
Nature Pub. Group
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/ncomms9547

Cover

More Information
Summary:All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C 61 -butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. All-polymer solar cells have advantages over fullerene-based solar cells due to improved stability and tunable chemical and electronic properties. Here, Kim et al. develop highly efficient and robust solar cells based on PBDTTTPD and P(NDI2HD-T), highlighting their potential in flexible and portable electronics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9547