Improved cerebrospinal fluid suppression for intracranial vessel wall MRI
Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle...
Saved in:
| Published in | Journal of magnetic resonance imaging Vol. 44; no. 3; pp. 665 - 672 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.09.2016
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-1807 1522-2586 1522-2586 |
| DOI | 10.1002/jmri.25211 |
Cover
| Abstract | Purpose
To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression.
Materials and Methods
The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle TSE‐based 3D BBMRI to improve CSF suppression. ADE‐BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast‐enhanced ADE‐BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE‐BBMRI and BBMRI, as well as pre‐ and postcontrast ADE‐BBMRI. Reliability was assessed by intraclass correlations (ICC).
Results
ADE‐BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36–44% reduction compared with BBMRI. ADE‐BBMRI also reduced the overall wall signal by 8–8.5%, but provided a significant improvement in wall‐to‐CSF contrast‐to‐noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE‐BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm2; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm2; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE‐BBMRI improved the plaque delineation by the increased wall signal, wall‐to‐CSF and wall‐to‐blood contrast‐to‐noise ratio. ICC ranged from 0.54 to 0.95.
Conclusion
The 3D ADE‐BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665–672. |
|---|---|
| AbstractList | Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5mm isotropic resolution and scan time of 5.4min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93±0.59 versus 3.95±1.67, P<0.01; basilar artery, 3.8±1.76 versus 1.34±0.54, P=0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35±2.87 versus 6.32±2.84mm2; wall area, 1.28±0.52 versus 1.27±0.53mm2; mean wall thickness, 0.93±0.30 versus 0.93±0.32mm; maximum wall thickness, 1.27±0.33 versus 1.28±0.36mm, all P>0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5mm isotropic resolution in 5min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672. To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672. Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5mm isotropic resolution and scan time of 5.4min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 plus or minus 0.59 versus 3.95 plus or minus 1.67, P<0.01; basilar artery, 3.8 plus or minus 1.76 versus 1.34 plus or minus 0.54, P=0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 plus or minus 2.87 versus 6.32 plus or minus 2.84mm super(2); wall area, 1.28 plus or minus 0.52 versus 1.27 plus or minus 0.53mm super(2); mean wall thickness, 0.93 plus or minus 0.30 versus 0.93 plus or minus 0.32mm; maximum wall thickness, 1.27 plus or minus 0.33 versus 1.28 plus or minus 0.36mm, all P>0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5mm isotropic resolution in 5min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016; 44:665-672. Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle TSE‐based 3D BBMRI to improve CSF suppression. ADE‐BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast‐enhanced ADE‐BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE‐BBMRI and BBMRI, as well as pre‐ and postcontrast ADE‐BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE‐BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36–44% reduction compared with BBMRI. ADE‐BBMRI also reduced the overall wall signal by 8–8.5%, but provided a significant improvement in wall‐to‐CSF contrast‐to‐noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE‐BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm2; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm2; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE‐BBMRI improved the plaque delineation by the increased wall signal, wall‐to‐CSF and wall‐to‐blood contrast‐to‐noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE‐BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665–672. To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression.PURPOSETo develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression.The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC).MATERIALS AND METHODSThe anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC).ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95.RESULTSADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95.The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672.CONCLUSIONThe 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672. |
| Author | Qin, Qin Liu, Li Qiao, Ye Yang, Huan Wasserman, Bruce A. Zhang, Xuefeng |
| Author_xml | – sequence: 1 givenname: Huan surname: Yang fullname: Yang, Huan organization: Shandong Medical Imaging Research Institute, Shandong University, Shandong, Jinan, China – sequence: 2 givenname: Xuefeng surname: Zhang fullname: Zhang, Xuefeng organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 3 givenname: Qin surname: Qin fullname: Qin, Qin organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA – sequence: 4 givenname: Li surname: Liu fullname: Liu, Li organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA – sequence: 5 givenname: Bruce A. surname: Wasserman fullname: Wasserman, Bruce A. organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA – sequence: 6 givenname: Ye surname: Qiao fullname: Qiao, Ye email: yqiao4@jhmi.edu organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26950926$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1rFTEUhoNU7Idu_AEy4EYqU0-SSTJZSrHXK7WCKHcZzsxkINfMh8lM6_33zXXaLooUVwnkeZPzPjkmB_3QW0JeUzijAOzDtgvujAlG6TNyRAVjOROlPEh7EDynJahDchzjFgC0LsQLcsikFqCZPCLrdTeG4do2WW2DrcIQR9ejz1o_uyaL8zgGG6Mb-qwdQub6KWAdsHcJuU4H1mc36H329fv6JXneoo_21d16Qn5efPpx_jm__LZan3-8zGvBC5pL3qBFhVQDVFqUdSlEyxRvKqqkrHhRqBYQsWgVVLREaTUKiylka1bTlp-Q98u9cz_ibv-6GYPrMOwMBbMXYvZCzF8hiX630Knl79nGyXQu1tZ77O0wR0NLKqSGEvj_oJRpLQRL6NtH6HaYQ_K2UFAwoffUmztqrjrbPIx5bz8BsAB18h6DbU3tJpyS7aTZ-X_3OX0UebI8XeAb5-3uCdJ8SR94n8mXjIuT_fOQwfDLSMWVMJurlVldbFRxVWyM4rdBGcOL |
| CitedBy_id | crossref_primary_10_1002_jmri_26028 crossref_primary_10_1259_bjr_20210031 crossref_primary_10_1002_brb3_1154 crossref_primary_10_1016_j_mric_2021_06_009 crossref_primary_10_1148_radiol_2021204096 crossref_primary_10_3174_ajnr_A5629 crossref_primary_10_1177_1747493019840942 crossref_primary_10_1007_s10334_017_0644_x crossref_primary_10_1016_j_crad_2021_01_008 crossref_primary_10_3174_ajnr_A6442 crossref_primary_10_1148_radiol_2017162096 crossref_primary_10_1016_j_mric_2023_04_006 crossref_primary_10_1016_j_yacr_2019_05_005 crossref_primary_10_3389_fnins_2023_1160018 crossref_primary_10_1016_j_nic_2021_01_005 crossref_primary_10_1053_j_sult_2021_07_004 crossref_primary_10_1109_TBME_2019_2896972 crossref_primary_10_1097_MD_0000000000008515 crossref_primary_10_1161_SVIN_122_000757 crossref_primary_10_3390_diagnostics12020258 crossref_primary_10_1259_bjr_20210145 crossref_primary_10_1002_nbm_4567 crossref_primary_10_1016_j_mri_2021_01_004 crossref_primary_10_12677_acm_2024_1441068 crossref_primary_10_1016_j_mri_2019_04_016 crossref_primary_10_1111_jon_12719 crossref_primary_10_3389_fnins_2021_665076 crossref_primary_10_1186_s12968_018_0453_z crossref_primary_10_3171_2019_9_FOCUS19599 |
| Cites_doi | 10.1002/mrm.22261 10.1056/NEJM198705283162204 10.1021/ja50001a068 10.1002/mrm.24142 10.1148/radiol.14131717 10.3174/ajnr.A2863 10.1161/01.STR.27.11.1974 10.1212/WNL.9.5.321 10.1161/hc0202.102121 10.1002/mrm.25667 10.1212/01.wnl.0000342470.69739.b3 10.1161/STROKEAHA.116.012970 10.2463/mrms.2013-0047 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W 10.1161/STROKEAHA.115.009037 10.1111/j.1552-6569.2009.00414.x 10.1111/j.1747-4949.2006.00045.x 10.1148/radiol.2232010659 10.1002/jmri.22592 10.1002/mrm.10391 10.1002/mrm.21680 10.1161/STROKEAHA.111.620443 10.1002/mrm.1910400216 |
| ContentType | Journal Article |
| Copyright | 2016 International Society for Magnetic Resonance in Medicine 2016 International Society for Magnetic Resonance in Medicine. 2016 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2016 International Society for Magnetic Resonance in Medicine – notice: 2016 International Society for Magnetic Resonance in Medicine. – notice: 2016 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| DOI | 10.1002/jmri.25211 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-2586 |
| EndPage | 672 |
| ExternalDocumentID | 10.1002/jmri.25211 4145746801 26950926 10_1002_jmri_25211 JMRI25211 ark_67375_WNG_GFW74N4W_7 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: R00HL106232 ; K25 HL121192 – fundername: NHLBI NIH HHS grantid: R00 HL106232 – fundername: NHLBI NIH HHS grantid: K25 HL121192 |
| GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5341-63daea7a1900b958c855f273db1766b3447f0aaa4f70b18a6e9a5eadaeec2c1f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1053-1807 1522-2586 |
| IngestDate | Sun Oct 05 09:16:05 EDT 2025 Tue Oct 07 09:49:59 EDT 2025 Fri Jul 11 16:31:09 EDT 2025 Tue Oct 07 05:53:24 EDT 2025 Mon Jul 21 06:07:25 EDT 2025 Wed Oct 01 04:36:54 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 Wed Aug 20 07:26:16 EDT 2025 Sun Sep 21 06:20:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | vessel wall 3D intracranial MRI isotropic |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5341-63daea7a1900b958c855f273db1766b3447f0aaa4f70b18a6e9a5eadaeec2c1f3 |
| Notes | ark:/67375/WNG-GFW74N4W-7 NIH - No. R00HL106232; No. K25 HL121192 ArticleID:JMRI25211 istex:7C2F4CA6F6A3879C1C19D8EBC726895A8CA9C54A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25211 |
| PMID | 26950926 |
| PQID | 1811042592 |
| PQPubID | 1006400 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1002_jmri_25211 proquest_miscellaneous_1815690803 proquest_miscellaneous_1811299552 proquest_journals_1811042592 pubmed_primary_26950926 crossref_citationtrail_10_1002_jmri_25211 crossref_primary_10_1002_jmri_25211 wiley_primary_10_1002_jmri_25211_JMRI25211 istex_primary_ark_67375_WNG_GFW74N4W_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2016 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Nashville |
| PublicationSubtitle | JMRI |
| PublicationTitle | Journal of magnetic resonance imaging |
| PublicationTitleAlternate | J. Magn. Reson. Imaging |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 2014:122812. Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009;72:627-634. Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH III, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 2012;33:755-760. Osawa S, Rhoton AL Jr, Tanriover N, Shimizu S, Fujii K. Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery. Neurosurgery 2008;63(Suppl 2):210-238; discussion 239. Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009;19(Suppl 1);1S-10S. Yoneyama M, Nakamura M, Takahara T, et al. Improvement of T1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE). Magn Reson Med Sci 2014;13:61-65. Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 2016;47:434-440. Becker ED, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784-7785. Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 2016;75:831-838. Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30. Wasserman BA, Smith WI, Trout HH III, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002;223:566-573. Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 2014;273:560-569. Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003;49:527-535. Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2015. [Epub ahead of print]. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375. Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553-561. Baker AB, Iannone A. Cerebrovascular disease. I. The large arteries of the circle of Willis. Neurology 1959;9:321-332. Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 2000;21:643-646. Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998;40:298-310. Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 2015;46:1567-1573. Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996;27:1974-1980. van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011;42:2478-2484. Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 2012;68:1423-1438. Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke 2006;1:158-159. Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-649. Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999;41:575-590. Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-185. 1969; 91 2000; 21 2016; 75 1959; 9 2011; 34 1999; 41 2006; 1 1998; 40 2014; 273 2012; 33 2010; 63 2015; 46 2009; 72 2002; 223 1987; 316 2011; 42 2002; 105 2014; 13 2003; 49 2015 2014 2008; 63 2009; 19 2012; 68 1996; 27 2008; 60 2016; 47 Osawa S (e_1_2_6_24_1) 2008; 63 Samuels OB (e_1_2_6_5_1) 2000; 21 e_1_2_6_19_1 Qiao Y (e_1_2_6_10_1) 2014 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Xie Y (e_1_2_6_13_1) 2015 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: Yoneyama M, Nakamura M, Takahara T, et al. Improvement of T1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE). Magn Reson Med Sci 2014;13:61-65. – reference: Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 2016;75:831-838. – reference: Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009;72:627-634. – reference: Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30. – reference: van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011;42:2478-2484. – reference: Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 2015;46:1567-1573. – reference: Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2015. [Epub ahead of print]. – reference: Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 2014;273:560-569. – reference: Baker AB, Iannone A. Cerebrovascular disease. I. The large arteries of the circle of Willis. Neurology 1959;9:321-332. – reference: Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH III, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 2012;33:755-760. – reference: Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 2012;68:1423-1438. – reference: Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-649. – reference: Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998;40:298-310. – reference: Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375. – reference: Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke 2006;1:158-159. – reference: Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 2016;47:434-440. – reference: Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996;27:1974-1980. – reference: Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-185. – reference: Becker ED, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784-7785. – reference: Osawa S, Rhoton AL Jr, Tanriover N, Shimizu S, Fujii K. Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery. Neurosurgery 2008;63(Suppl 2):210-238; discussion 239. – reference: Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003;49:527-535. – reference: Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009;19(Suppl 1);1S-10S. – reference: Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553-561. – reference: Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 2014:122812. – reference: Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999;41:575-590. – reference: Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 2000;21:643-646. – reference: Wasserman BA, Smith WI, Trout HH III, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002;223:566-573. – volume: 91 start-page: 7784 year: 1969 end-page: 7785 article-title: Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement publication-title: J Am Chem Soc – volume: 72 start-page: 627 year: 2009 end-page: 634 article-title: Intracranial arterial wall imaging using high‐resolution 3‐tesla contrast‐enhanced MRI publication-title: Neurology – start-page: 122812 year: 2014 article-title: Intracranial plaque enhancement in patients with cerebrovascular events on high‐spatial‐resolution MR images publication-title: Radiology – year: 2015 article-title: Improved black‐blood imaging using DANTE‐SPACE for simultaneous carotid and intracranial vessel wall evaluation publication-title: Magn Reson Med – volume: 40 start-page: 298 year: 1998 end-page: 310 article-title: Intracranial black‐blood MR angiography with high‐resolution 3D fast spin echo publication-title: Magn Reson Med – volume: 19 start-page: 1S issue: Suppl 1 year: 2009 end-page: 10S article-title: Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results publication-title: J Neuroimaging – volume: 41 start-page: 575 year: 1999 end-page: 590 article-title: Voxel sensitivity function description of flow‐induced signal loss in MR imaging: implications for black‐blood MR angiography with turbo spin‐echo sequences publication-title: Magn Reson Med – volume: 9 start-page: 321 year: 1959 end-page: 332 article-title: Cerebrovascular disease. I. The large arteries of the circle of Willis publication-title: Neurology – volume: 75 start-page: 831 year: 2016 end-page: 838 article-title: Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI publication-title: Magn Reson Med – volume: 27 start-page: 1974 year: 1996 end-page: 1980 article-title: Race and sex differences in the distribution of cerebral atherosclerosis publication-title: Stroke – volume: 49 start-page: 527 year: 2003 end-page: 535 article-title: Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS) publication-title: Magn Reson Med – volume: 63 start-page: 210 issue: Suppl 2 year: 2008 end-page: 238 article-title: Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery publication-title: Neurosurgery – volume: 34 start-page: 22 year: 2011 end-page: 30 article-title: Intracranial arterial wall imaging using three‐dimensional high isotropic resolution black blood MRI at 3.0 Tesla publication-title: J Magn Reson Imaging – volume: 46 start-page: 1567 year: 2015 end-page: 1573 article-title: Multicontrast high‐resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes publication-title: Stroke – volume: 13 start-page: 61 year: 2014 end-page: 65 article-title: Improvement of T1 contrast in whole‐brain black‐blood imaging using motion‐sensitized driven‐equilibrium prepared 3D turbo spin echo (3D MSDE‐TSE) publication-title: Magn Reson Med Sci – volume: 223 start-page: 566 year: 2002 end-page: 573 article-title: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium‐enhanced double‐oblique MR imaging initial results publication-title: Radiology – volume: 68 start-page: 1423 year: 2012 end-page: 1438 article-title: DANTE‐prepared pulse trains: a novel approach to motion‐sensitized and motion‐suppressed quantitative magnetic resonance imaging publication-title: Magn Reson Med – volume: 63 start-page: 553 year: 2010 end-page: 561 article-title: Contrast‐enhanced, three‐dimensional, whole‐brain, black‐blood imaging: application to small brain metastases publication-title: Magn Reson Med – volume: 105 start-page: 181 year: 2002 end-page: 185 article-title: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke publication-title: Circulation – volume: 33 start-page: 755 year: 2012 end-page: 760 article-title: Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events publication-title: AJNR Am J Neuroradiol – volume: 316 start-page: 1371 year: 1987 end-page: 1375 article-title: Compensatory enlargement of human atherosclerotic coronary arteries publication-title: N Engl J Med – volume: 60 start-page: 640 year: 2008 end-page: 649 article-title: Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo publication-title: Magn Reson Med – volume: 42 start-page: 2478 year: 2011 end-page: 2484 article-title: Intracranial vessel wall imaging at 7.0‐T MRI publication-title: Stroke – volume: 273 start-page: 560 year: 2014 end-page: 569 article-title: Black‐blood multicontrast imaging of carotid arteries with DANTE‐prepared 2D and 3D MR imaging publication-title: Radiology – volume: 1 start-page: 158 year: 2006 end-page: 159 article-title: Global burden of intracranial atherosclerosis publication-title: Int J Stroke – volume: 47 start-page: 434 year: 2016 end-page: 440 article-title: Patterns and implications of intracranial arterial remodeling in stroke patients publication-title: Stroke – volume: 21 start-page: 643 year: 2000 end-page: 646 article-title: A standardized method for measuring intracranial arterial stenosis publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_16_1 doi: 10.1002/mrm.22261 – ident: e_1_2_6_6_1 doi: 10.1056/NEJM198705283162204 – ident: e_1_2_6_22_1 doi: 10.1021/ja50001a068 – year: 2015 ident: e_1_2_6_13_1 article-title: Improved black‐blood imaging using DANTE‐SPACE for simultaneous carotid and intracranial vessel wall evaluation publication-title: Magn Reson Med – ident: e_1_2_6_12_1 doi: 10.1002/mrm.24142 – ident: e_1_2_6_23_1 doi: 10.1148/radiol.14131717 – ident: e_1_2_6_9_1 doi: 10.3174/ajnr.A2863 – ident: e_1_2_6_2_1 doi: 10.1161/01.STR.27.11.1974 – ident: e_1_2_6_25_1 doi: 10.1212/WNL.9.5.321 – ident: e_1_2_6_7_1 doi: 10.1161/hc0202.102121 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.25667 – ident: e_1_2_6_26_1 doi: 10.1212/01.wnl.0000342470.69739.b3 – ident: e_1_2_6_27_1 doi: 10.1161/STROKEAHA.116.012970 – ident: e_1_2_6_15_1 doi: 10.2463/mrms.2013-0047 – ident: e_1_2_6_21_1 doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W – ident: e_1_2_6_28_1 doi: 10.1161/STROKEAHA.115.009037 – ident: e_1_2_6_4_1 doi: 10.1111/j.1552-6569.2009.00414.x – ident: e_1_2_6_3_1 doi: 10.1111/j.1747-4949.2006.00045.x – ident: e_1_2_6_8_1 doi: 10.1148/radiol.2232010659 – ident: e_1_2_6_17_1 doi: 10.1002/jmri.22592 – volume: 63 start-page: 210 issue: 2 year: 2008 ident: e_1_2_6_24_1 article-title: Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery publication-title: Neurosurgery – volume: 21 start-page: 643 year: 2000 ident: e_1_2_6_5_1 article-title: A standardized method for measuring intracranial arterial stenosis publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_18_1 doi: 10.1002/mrm.10391 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.21680 – start-page: 122812 year: 2014 ident: e_1_2_6_10_1 article-title: Intracranial plaque enhancement in patients with cerebrovascular events on high‐spatial‐resolution MR images publication-title: Radiology – ident: e_1_2_6_11_1 doi: 10.1161/STROKEAHA.111.620443 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.1910400216 |
| SSID | ssj0009945 |
| Score | 2.3353758 |
| Snippet | Purpose
To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved... To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved... Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved... |
| SourceID | unpaywall proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 665 |
| SubjectTerms | Adult Aged Aged, 80 and over Algorithms Cerebral Angiography - methods Cerebral Arteries - anatomy & histology Cerebral Arteries - diagnostic imaging Cerebrospinal Fluid - cytology Cerebrospinal Fluid - diagnostic imaging Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods intracranial isotropic Magnetic Resonance Angiography - methods Magnetic resonance imaging Male Middle Aged MRI Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Subtraction Technique vessel wall |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KB9v6sO9u3rrhsTLYwKm_JMuwlzGWfkDyUFbSlyHOsgRZXTck8b7--p1kx6GjBLY3g0-2pbvT_SSdfwewzyNMypRHgQ4NLVBUZgIKCnEQo-CpEjlGLptwNOZHZ-nJOTvfgg-rf2Fafoh-w816hpuvrYNjsThYk4Z-u5xPBzFFH7v2iRLu1lOna-6oPHcVigk_JEEkwqznJo0P1k2vRaNbdmB_3gQ1d-BOU8_w1w-squso1oWh4X34uupAm31yMWiWxUD9_ovb8X97-ADudfjU_9ga1EPY0vUjuD3qTuAfw3G7C6FLX-k5radt2RHbwFTNtPQXzaxLrK19QsP-1G4dKwqHZOX-d0tTXvm2d_7o9PgJnA0_f_l0FHTlGALFKNYFPClRY4YEIcIiZ0IJxgyhn7KwJJOFpQ40ISKmJguLSCDXOTIyVNRaxSoyyS5s11e1fgZ-kTCT5ByLRGGKTAh6dBkpLUKjmeGZB-9WapGq4yq3JTMq2bIsx9KOjXRj48GbXnbWMnTcKPXWabcXwfmFzWnLmJyMD-XhcJKl43Qi6dV7K_XLzp0XkmBQZGe3PPbgdX-bHNGermCtr5pWhmI7Y5tlGM8JpCcePG1Nq_-gmOcE3mLuwX5vaxs79N7ZzgYReULKdFfP_0X4BdwlVMjbRLo92F7OG_2SkNeyeOU87A9xdSiN priority: 102 providerName: Wiley-Blackwell |
| Title | Improved cerebrospinal fluid suppression for intracranial vessel wall MRI |
| URI | https://api.istex.fr/ark:/67375/WNG-GFW74N4W-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25211 https://www.ncbi.nlm.nih.gov/pubmed/26950926 https://www.proquest.com/docview/1811042592 https://www.proquest.com/docview/1811299552 https://www.proquest.com/docview/1815690803 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25211 |
| UnpaywallVersion | publishedVersion |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2586 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GAnt82PvhrSseK4MNnNmyJdsfy1j6gIRRFtJ9EmdZgqyeG9J4r79-J8sx7ShhsG8Gn2RLutP9Tjr9BLAnIozLRESBDg0FKCo1ATkFFjDMRKKyHKM2m3AyFYez5PiUn146xe_4IfoFN2sZ7XxtDXxZGjfPd7v77P3Xb6vFiJEHovhnKDih8QEMZ9NP-1_aTU4eB5E7MU1eir7PM9EzlF4ufMUnDW33_rwOcN6BW029xF8_sKquYtnWGY3vAW6a4XJQzkbNuhip338xPP5PO-_D3Q6p-vtOtR7ADV0_hJuTbi_-ERy59Qhd-kqvKLK2F5DYAqZqFqV_0Sy7FNvaJ1zsL-wisiLHSPruf7eE5ZVvW-hPTo4ew2z88fOHw6C7mCFQnLxeIOISNaZIYCIscp6pjHNDOKgsLN1kYUkETYiIiUnDIspQ6Bw5qSxqrZiKTPwEBvV5rZ-BX8TcxLnAIlaYIM8yqrqMlM5Co7kRqQdvN0MjVcdabi_PqKTjW2bS9o1s-8aD173s0nF1XCv1ph3hXgRXZza7LeVyPj2QB-N5mkyTuaRP72xUQHaGfSEJEEV2nsuZB6_612SSdp8Fa33eOBny8pxvl-EiJ7gee_DUqVf_Q0zkBOOY8GCv17etDXrX6s8WEXlMg9k-Pf-3Ol_AbUKGwiXT7cBgvWr0S0Jf62KX4o4TttuZ2R8q4C2e |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejhXV72PeHt27zWBms4NRfku3HUpYmXZOH0pK-ibMsQVbPDUm8j_71vZNdh44S2N4MPtmWdKf7nXT-HWM7IoCoiEXgad9ggKIS46FTCL0QUhGrNIPAZhOOxmJwFh-d8_M2N4f-hWn4IboNN7IMu16TgdOG9N6KNfT7j_m0F6L7weBnMxYYqBAmOlmxR2WZrVGMCCLygtRPOnbScG_V9pY_2qSh_X0X2HzItupqBn9-QVnexrHWEfUfN9VWF5a_kPJPLnr1Mu-pq7_YHf-7j0_YoxaiuvuNTj1l93T1jN0ftYfwz9mw2YjQhav0HENqqjxCDUxZTwt3Uc_a3NrKRUDsTmn3WKFHREV3fxJTeelS99zRyfAFO-t_PT0YeG1FBk9xdHeeiArQkACiCD_PeKpSzg0CoCInnsmc2AONDwCxSfw8SEHoDDjqKmitQhWY6CXbqC4r_Zq5ecRNlAnIIwUx8DTFRxeB0qlvNDcicdiXm3mRqqUrp6oZpWyIlkNJYyPt2DjsUyc7a0g67pT6bKe3E4H5BaW1JVxOxofysD9J4nE8kfjq7Zv5l61FLyQioYAWuCx02MfuNtoiHbBApS_rRgbdO-frZbjIEKdHDnvV6Fb3QaHIEL-FwmE7nbKt7dCuVZ41IvIIJ9NevfkX4Q9sa3A6OpbHw_G3t-wBgkTR5NVts43lvNbvEIgt8_fW3K4B8GQsrg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJg32wDdb2IAgJiSQ0uXLjv2IGN06aIUmpu7Nuji21C1kVdsA46_n7GSphqZK8BYp5yT23fl-ti-_I2SPRZAUKYsCHRpcoKjMBBgU4iAGzlLFBUQum3A4Yken6fEZPWtzc-y_MA0_RLfhZj3DzdfWwfW0MPtL1tDz77NJL8bwg4uf9ZQKbjP6Dk6W7FFCuBrFiCCSIOJh1rGTxvvLtjfi0bod2l-3gc1NcreupnD1E8ryJo51gaj_oKm2Onf8hTb_5KJXL_Ke-v0Xu-N_9_Ehud9CVP9DY1OPyB1dPSYbw_YQ_gkZNBsRuvCVnuGS2lYesQ1MWU8Kf15P29zaykdA7E_s7rHCiIiG7v-wTOWlb7vnD08GT8lp_9O3j0dBW5EhUBTDXcCSAjRkgCgizAXlilNqEAAVueWZzC17oAkBIDVZmEccmBZA0VZBaxWryCTPyFp1Welt4ucJNYlgkCcKUqCc46OLSGkeGk0Nyzzy7lovUrV05bZqRikbouVY2rGRbmw88qaTnTYkHbdKvXXq7URgdmHT2jIqx6NDedgfZ-koHUt89e61_mXr0XOJSCiyE5yIPfK6u42-aA9YoNKXdSOD4Z3S1TKUCcTpiUe2GtvqPihmAvFbzDyy1xnbyg69d8azQkQeozLd1fN_EX5FNr4e9OWXwejzDrmHGJE1aXW7ZG0xq_ULxGGL_KXztj9ctywy |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GAtv6Ye-Ht254rAw2cOaXZPljGUsfkDDGQrpP4ixLkNV1Qxrv9dfvZDmmHSUM9s3gk-yT7nQ_SaefAPZ4hEmZ8ijQoaEJispMQEEhDmIUPFUix6jNJpxM-eEsPT5hJ5dO8Tt-iH7BzXpGO15bB1-Wxo3z3e5-_P7b2WoxiikC0fxnyBmh8QEMZ9NP-1_bTU6WBJE7MU1Rir7PBO8ZSi8XvhKThrZ5f14HOHfgVlMv8dcPrKqrWLYNRuO7gBs1XA7K6ahZFyP1-y-Gx__R8x7c6ZCqv-9M6z7c0PUDuDnp9uIfwpFbj9Clr_SKZtb2AhJbwFTNovQvmmWXYlv7hIv9hV1EVhQYyd7975awvPKthv7k89EjmI0_fvlwGHQXMwSKUdQLeFKixgwJTIRFzoQSjBnCQWVh6SYLSyJoQkRMTRYWkUCuc2Rksqi1ilVkkscwqM9r_RT8ImEmyTkWicIUmRBUdRkpLUKjmeGZB283XSNVx1puL8-opONbjqVtG9m2jQeve9ml4-q4VupN28O9CK5ObXZbxuR8eiAPxvMsnaZzSZ_e3ZiA7Bz7QhIgiuw4l8cevOpfk0vafRas9XnjZCjKM7ZdhvGc4HriwRNnXv0PxTwnGBdzD_Z6e9uq0LvWfraIyGPqzPbp2b_V-RxuEzLkLpluFwbrVaNfEPpaFy87B_sDHwkstQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+cerebrospinal+fluid+suppression+for+intracranial+vessel+wall+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Yang%2C+Huan&rft.au=Zhang%2C+Xuefeng&rft.au=Qin%2C+Qin&rft.au=Liu%2C+Li&rft.date=2016-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=44&rft.issue=3&rft.spage=665&rft.epage=672&rft_id=info:doi/10.1002%2Fjmri.25211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_25211 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |