Improved cerebrospinal fluid suppression for intracranial vessel wall MRI

Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 44; no. 3; pp. 665 - 672
Main Authors Yang, Huan, Zhang, Xuefeng, Qin, Qin, Liu, Li, Wasserman, Bruce A., Qiao, Ye
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.25211

Cover

Abstract Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle TSE‐based 3D BBMRI to improve CSF suppression. ADE‐BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast‐enhanced ADE‐BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE‐BBMRI and BBMRI, as well as pre‐ and postcontrast ADE‐BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE‐BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36–44% reduction compared with BBMRI. ADE‐BBMRI also reduced the overall wall signal by 8–8.5%, but provided a significant improvement in wall‐to‐CSF contrast‐to‐noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE‐BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm2; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm2; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE‐BBMRI improved the plaque delineation by the increased wall signal, wall‐to‐CSF and wall‐to‐blood contrast‐to‐noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE‐BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665–672.
AbstractList Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5mm isotropic resolution and scan time of 5.4min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93±0.59 versus 3.95±1.67, P<0.01; basilar artery, 3.8±1.76 versus 1.34±0.54, P=0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35±2.87 versus 6.32±2.84mm2; wall area, 1.28±0.52 versus 1.27±0.53mm2; mean wall thickness, 0.93±0.30 versus 0.93±0.32mm; maximum wall thickness, 1.27±0.33 versus 1.28±0.36mm, all P>0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5mm isotropic resolution in 5min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672.
To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672.
Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5mm isotropic resolution and scan time of 5.4min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 plus or minus 0.59 versus 3.95 plus or minus 1.67, P<0.01; basilar artery, 3.8 plus or minus 1.76 versus 1.34 plus or minus 0.54, P=0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 plus or minus 2.87 versus 6.32 plus or minus 2.84mm super(2); wall area, 1.28 plus or minus 0.52 versus 1.27 plus or minus 0.53mm super(2); mean wall thickness, 0.93 plus or minus 0.30 versus 0.93 plus or minus 0.32mm; maximum wall thickness, 1.27 plus or minus 0.33 versus 1.28 plus or minus 0.36mm, all P>0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5mm isotropic resolution in 5min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016; 44:665-672.
Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression. Materials and Methods The anti‐driven‐equilibrium (ADE) pulse was incorporated into a variable flip‐angle TSE‐based 3D BBMRI to improve CSF suppression. ADE‐BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast‐enhanced ADE‐BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE‐BBMRI and BBMRI, as well as pre‐ and postcontrast ADE‐BBMRI. Reliability was assessed by intraclass correlations (ICC). Results ADE‐BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36–44% reduction compared with BBMRI. ADE‐BBMRI also reduced the overall wall signal by 8–8.5%, but provided a significant improvement in wall‐to‐CSF contrast‐to‐noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE‐BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm2; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm2; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE‐BBMRI improved the plaque delineation by the increased wall signal, wall‐to‐CSF and wall‐to‐blood contrast‐to‐noise ratio. ICC ranged from 0.54 to 0.95. Conclusion The 3D ADE‐BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665–672.
To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression.PURPOSETo develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved cerebrospinal fluid (CSF) suppression.The anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC).MATERIALS AND METHODSThe anti-driven-equilibrium (ADE) pulse was incorporated into a variable flip-angle TSE-based 3D BBMRI to improve CSF suppression. ADE-BBMRI was optimized in 8 participants and compared with BBMRI, with acquired 0.5 mm isotropic resolution and scan time of 5.4 min at 3 Tesla. Contrast-enhanced ADE-BBMRI protocol was implemented in nine patients with intracranial atherosclerosis. Signal and morphological measurements were compared between ADE-BBMRI and BBMRI, as well as pre- and postcontrast ADE-BBMRI. Reliability was assessed by intraclass correlations (ICC).ADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95.RESULTSADE-BBMRI effectively suppressed the surrounding CSF signal of intracranial vessels, with a 36-44% reduction compared with BBMRI. ADE-BBMRI also reduced the overall wall signal by 8-8.5%, but provided a significant improvement in wall-to-CSF contrast-to-noise ratio over BBMRI (middle cerebral artery, 5.93 ± 0.59 versus 3.95 ± 1.67, P < 0.01; basilar artery, 3.8 ± 1.76 versus 1.34 ± 0.54, P = 0.01, respectively). No differences were noted in morphological measurements between ADE-BBMRI and BBMRI (lumen area, 6.35 ± 2.87 versus 6.32 ± 2.84 mm(2) ; wall area, 1.28 ± 0.52 versus 1.27 ± 0.53 mm(2) ; mean wall thickness, 0.93 ± 0.30 versus 0.93 ± 0.32 mm; maximum wall thickness, 1.27 ± 0.33 versus 1.28 ± 0.36 mm, all P > 0.05). Contrast enhanced ADE-BBMRI improved the plaque delineation by the increased wall signal, wall-to-CSF and wall-to-blood contrast-to-noise ratio. ICC ranged from 0.54 to 0.95.The 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672.CONCLUSIONThe 3D ADE-BBMRI provides excellent blood and CSF suppression, and accurate measurements of intracranial vessels at 0.5 mm isotropic resolution in 5 min. Its clinical application may provide insight into stroke risk. J. Magn. Reson. Imaging 2016;44:665-672.
Author Qin, Qin
Liu, Li
Qiao, Ye
Yang, Huan
Wasserman, Bruce A.
Zhang, Xuefeng
Author_xml – sequence: 1
  givenname: Huan
  surname: Yang
  fullname: Yang, Huan
  organization: Shandong Medical Imaging Research Institute, Shandong University, Shandong, Jinan, China
– sequence: 2
  givenname: Xuefeng
  surname: Zhang
  fullname: Zhang, Xuefeng
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 3
  givenname: Qin
  surname: Qin
  fullname: Qin, Qin
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
– sequence: 4
  givenname: Li
  surname: Liu
  fullname: Liu, Li
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA
– sequence: 5
  givenname: Bruce A.
  surname: Wasserman
  fullname: Wasserman, Bruce A.
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA
– sequence: 6
  givenname: Ye
  surname: Qiao
  fullname: Qiao, Ye
  email: yqiao4@jhmi.edu
  organization: The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Maryland, Baltimore, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26950926$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFTEUhoNU7Idu_AEy4EYqU0-SSTJZSrHXK7WCKHcZzsxkINfMh8lM6_33zXXaLooUVwnkeZPzPjkmB_3QW0JeUzijAOzDtgvujAlG6TNyRAVjOROlPEh7EDynJahDchzjFgC0LsQLcsikFqCZPCLrdTeG4do2WW2DrcIQR9ejz1o_uyaL8zgGG6Mb-qwdQub6KWAdsHcJuU4H1mc36H329fv6JXneoo_21d16Qn5efPpx_jm__LZan3-8zGvBC5pL3qBFhVQDVFqUdSlEyxRvKqqkrHhRqBYQsWgVVLREaTUKiylka1bTlp-Q98u9cz_ibv-6GYPrMOwMBbMXYvZCzF8hiX630Knl79nGyXQu1tZ77O0wR0NLKqSGEvj_oJRpLQRL6NtH6HaYQ_K2UFAwoffUmztqrjrbPIx5bz8BsAB18h6DbU3tJpyS7aTZ-X_3OX0UebI8XeAb5-3uCdJ8SR94n8mXjIuT_fOQwfDLSMWVMJurlVldbFRxVWyM4rdBGcOL
CitedBy_id crossref_primary_10_1002_jmri_26028
crossref_primary_10_1259_bjr_20210031
crossref_primary_10_1002_brb3_1154
crossref_primary_10_1016_j_mric_2021_06_009
crossref_primary_10_1148_radiol_2021204096
crossref_primary_10_3174_ajnr_A5629
crossref_primary_10_1177_1747493019840942
crossref_primary_10_1007_s10334_017_0644_x
crossref_primary_10_1016_j_crad_2021_01_008
crossref_primary_10_3174_ajnr_A6442
crossref_primary_10_1148_radiol_2017162096
crossref_primary_10_1016_j_mric_2023_04_006
crossref_primary_10_1016_j_yacr_2019_05_005
crossref_primary_10_3389_fnins_2023_1160018
crossref_primary_10_1016_j_nic_2021_01_005
crossref_primary_10_1053_j_sult_2021_07_004
crossref_primary_10_1109_TBME_2019_2896972
crossref_primary_10_1097_MD_0000000000008515
crossref_primary_10_1161_SVIN_122_000757
crossref_primary_10_3390_diagnostics12020258
crossref_primary_10_1259_bjr_20210145
crossref_primary_10_1002_nbm_4567
crossref_primary_10_1016_j_mri_2021_01_004
crossref_primary_10_12677_acm_2024_1441068
crossref_primary_10_1016_j_mri_2019_04_016
crossref_primary_10_1111_jon_12719
crossref_primary_10_3389_fnins_2021_665076
crossref_primary_10_1186_s12968_018_0453_z
crossref_primary_10_3171_2019_9_FOCUS19599
Cites_doi 10.1002/mrm.22261
10.1056/NEJM198705283162204
10.1021/ja50001a068
10.1002/mrm.24142
10.1148/radiol.14131717
10.3174/ajnr.A2863
10.1161/01.STR.27.11.1974
10.1212/WNL.9.5.321
10.1161/hc0202.102121
10.1002/mrm.25667
10.1212/01.wnl.0000342470.69739.b3
10.1161/STROKEAHA.116.012970
10.2463/mrms.2013-0047
10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
10.1161/STROKEAHA.115.009037
10.1111/j.1552-6569.2009.00414.x
10.1111/j.1747-4949.2006.00045.x
10.1148/radiol.2232010659
10.1002/jmri.22592
10.1002/mrm.10391
10.1002/mrm.21680
10.1161/STROKEAHA.111.620443
10.1002/mrm.1910400216
ContentType Journal Article
Copyright 2016 International Society for Magnetic Resonance in Medicine
2016 International Society for Magnetic Resonance in Medicine.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 International Society for Magnetic Resonance in Medicine
– notice: 2016 International Society for Magnetic Resonance in Medicine.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
DOI 10.1002/jmri.25211
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 672
ExternalDocumentID 10.1002/jmri.25211
4145746801
26950926
10_1002_jmri_25211
JMRI25211
ark_67375_WNG_GFW74N4W_7
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R00HL106232 ; K25 HL121192
– fundername: NHLBI NIH HHS
  grantid: R00 HL106232
– fundername: NHLBI NIH HHS
  grantid: K25 HL121192
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c5341-63daea7a1900b958c855f273db1766b3447f0aaa4f70b18a6e9a5eadaeec2c1f3
IEDL.DBID UNPAY
ISSN 1053-1807
1522-2586
IngestDate Sun Oct 05 09:16:05 EDT 2025
Tue Oct 07 09:49:59 EDT 2025
Fri Jul 11 16:31:09 EDT 2025
Tue Oct 07 05:53:24 EDT 2025
Mon Jul 21 06:07:25 EDT 2025
Wed Oct 01 04:36:54 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
Wed Aug 20 07:26:16 EDT 2025
Sun Sep 21 06:20:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords vessel wall
3D
intracranial
MRI
isotropic
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5341-63daea7a1900b958c855f273db1766b3447f0aaa4f70b18a6e9a5eadaeec2c1f3
Notes ark:/67375/WNG-GFW74N4W-7
NIH - No. R00HL106232; No. K25 HL121192
ArticleID:JMRI25211
istex:7C2F4CA6F6A3879C1C19D8EBC726895A8CA9C54A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25211
PMID 26950926
PQID 1811042592
PQPubID 1006400
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_jmri_25211
proquest_miscellaneous_1815690803
proquest_miscellaneous_1811299552
proquest_journals_1811042592
pubmed_primary_26950926
crossref_citationtrail_10_1002_jmri_25211
crossref_primary_10_1002_jmri_25211
wiley_primary_10_1002_jmri_25211_JMRI25211
istex_primary_ark_67375_WNG_GFW74N4W_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 2014:122812.
Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009;72:627-634.
Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH III, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 2012;33:755-760.
Osawa S, Rhoton AL Jr, Tanriover N, Shimizu S, Fujii K. Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery. Neurosurgery 2008;63(Suppl 2):210-238; discussion 239.
Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009;19(Suppl 1);1S-10S.
Yoneyama M, Nakamura M, Takahara T, et al. Improvement of T1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE). Magn Reson Med Sci 2014;13:61-65.
Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 2016;47:434-440.
Becker ED, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784-7785.
Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 2016;75:831-838.
Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30.
Wasserman BA, Smith WI, Trout HH III, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002;223:566-573.
Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 2014;273:560-569.
Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003;49:527-535.
Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2015. [Epub ahead of print].
Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375.
Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553-561.
Baker AB, Iannone A. Cerebrovascular disease. I. The large arteries of the circle of Willis. Neurology 1959;9:321-332.
Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 2000;21:643-646.
Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998;40:298-310.
Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 2015;46:1567-1573.
Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996;27:1974-1980.
van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011;42:2478-2484.
Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 2012;68:1423-1438.
Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke 2006;1:158-159.
Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-649.
Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999;41:575-590.
Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-185.
1969; 91
2000; 21
2016; 75
1959; 9
2011; 34
1999; 41
2006; 1
1998; 40
2014; 273
2012; 33
2010; 63
2015; 46
2009; 72
2002; 223
1987; 316
2011; 42
2002; 105
2014; 13
2003; 49
2015
2014
2008; 63
2009; 19
2012; 68
1996; 27
2008; 60
2016; 47
Osawa S (e_1_2_6_24_1) 2008; 63
Samuels OB (e_1_2_6_5_1) 2000; 21
e_1_2_6_19_1
Qiao Y (e_1_2_6_10_1) 2014
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Xie Y (e_1_2_6_13_1) 2015
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Yoneyama M, Nakamura M, Takahara T, et al. Improvement of T1 contrast in whole-brain black-blood imaging using motion-sensitized driven-equilibrium prepared 3D turbo spin echo (3D MSDE-TSE). Magn Reson Med Sci 2014;13:61-65.
– reference: Wang J, Helle M, Zhou Z, Bornert P, Hatsukami TS, Yuan C. Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI. Magn Reson Med 2016;75:831-838.
– reference: Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology 2009;72:627-634.
– reference: Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30.
– reference: van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011;42:2478-2484.
– reference: Mossa-Basha M, Hwang WD, De Havenon A, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 2015;46:1567-1573.
– reference: Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2015. [Epub ahead of print].
– reference: Li L, Chai JT, Biasiolli L, et al. Black-blood multicontrast imaging of carotid arteries with DANTE-prepared 2D and 3D MR imaging. Radiology 2014;273:560-569.
– reference: Baker AB, Iannone A. Cerebrovascular disease. I. The large arteries of the circle of Willis. Neurology 1959;9:321-332.
– reference: Qiao Y, Etesami M, Astor BC, Zeiler SR, Trout HH III, Wasserman BA. Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events. AJNR Am J Neuroradiol 2012;33:755-760.
– reference: Li L, Miller KL, Jezzard P. DANTE-prepared pulse trains: a novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn Reson Med 2012;68:1423-1438.
– reference: Busse RF, Brau AC, Vu A, et al. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn Reson Med 2008;60:640-649.
– reference: Alexander AL, Buswell HR, Sun Y, Chapman BE, Tsuruda JS, Parker DL. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998;40:298-310.
– reference: Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371-1375.
– reference: Wong LK. Global burden of intracranial atherosclerosis. Int J Stroke 2006;1:158-159.
– reference: Qiao Y, Anwar Z, Intrapiromkul J, et al. Patterns and implications of intracranial arterial remodeling in stroke patients. Stroke 2016;47:434-440.
– reference: Wityk RJ, Lehman D, Klag M, Coresh J, Ahn H, Litt B. Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 1996;27:1974-1980.
– reference: Yuan C, Zhang SX, Polissar NL, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 2002;105:181-185.
– reference: Becker ED, Farrar TC. Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784-7785.
– reference: Osawa S, Rhoton AL Jr, Tanriover N, Shimizu S, Fujii K. Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery. Neurosurgery 2008;63(Suppl 2):210-238; discussion 239.
– reference: Hennig J, Weigel M, Scheffler K. Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 2003;49:527-535.
– reference: Qureshi AI, Feldmann E, Gomez CR, et al. Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results. J Neuroimaging 2009;19(Suppl 1);1S-10S.
– reference: Park J, Kim EY. Contrast-enhanced, three-dimensional, whole-brain, black-blood imaging: application to small brain metastases. Magn Reson Med 2010;63:553-561.
– reference: Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology 2014:122812.
– reference: Jara H, Yu BC, Caruthers SD, Melhem ER, Yucel EK. Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 1999;41:575-590.
– reference: Samuels OB, Joseph GJ, Lynn MJ, Smith HA, Chimowitz MI. A standardized method for measuring intracranial arterial stenosis. AJNR Am J Neuroradiol 2000;21:643-646.
– reference: Wasserman BA, Smith WI, Trout HH III, et al. Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 2002;223:566-573.
– volume: 91
  start-page: 7784
  year: 1969
  end-page: 7785
  article-title: Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement
  publication-title: J Am Chem Soc
– volume: 72
  start-page: 627
  year: 2009
  end-page: 634
  article-title: Intracranial arterial wall imaging using high‐resolution 3‐tesla contrast‐enhanced MRI
  publication-title: Neurology
– start-page: 122812
  year: 2014
  article-title: Intracranial plaque enhancement in patients with cerebrovascular events on high‐spatial‐resolution MR images
  publication-title: Radiology
– year: 2015
  article-title: Improved black‐blood imaging using DANTE‐SPACE for simultaneous carotid and intracranial vessel wall evaluation
  publication-title: Magn Reson Med
– volume: 40
  start-page: 298
  year: 1998
  end-page: 310
  article-title: Intracranial black‐blood MR angiography with high‐resolution 3D fast spin echo
  publication-title: Magn Reson Med
– volume: 19
  start-page: 1S
  issue: Suppl 1
  year: 2009
  end-page: 10S
  article-title: Consensus conference on intracranial atherosclerotic disease: rationale, methodology, and results
  publication-title: J Neuroimaging
– volume: 41
  start-page: 575
  year: 1999
  end-page: 590
  article-title: Voxel sensitivity function description of flow‐induced signal loss in MR imaging: implications for black‐blood MR angiography with turbo spin‐echo sequences
  publication-title: Magn Reson Med
– volume: 9
  start-page: 321
  year: 1959
  end-page: 332
  article-title: Cerebrovascular disease. I. The large arteries of the circle of Willis
  publication-title: Neurology
– volume: 75
  start-page: 831
  year: 2016
  end-page: 838
  article-title: Joint blood and cerebrospinal fluid suppression for intracranial vessel wall MRI
  publication-title: Magn Reson Med
– volume: 27
  start-page: 1974
  year: 1996
  end-page: 1980
  article-title: Race and sex differences in the distribution of cerebral atherosclerosis
  publication-title: Stroke
– volume: 49
  start-page: 527
  year: 2003
  end-page: 535
  article-title: Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS)
  publication-title: Magn Reson Med
– volume: 63
  start-page: 210
  issue: Suppl 2
  year: 2008
  end-page: 238
  article-title: Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery
  publication-title: Neurosurgery
– volume: 34
  start-page: 22
  year: 2011
  end-page: 30
  article-title: Intracranial arterial wall imaging using three‐dimensional high isotropic resolution black blood MRI at 3.0 Tesla
  publication-title: J Magn Reson Imaging
– volume: 46
  start-page: 1567
  year: 2015
  end-page: 1573
  article-title: Multicontrast high‐resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes
  publication-title: Stroke
– volume: 13
  start-page: 61
  year: 2014
  end-page: 65
  article-title: Improvement of T1 contrast in whole‐brain black‐blood imaging using motion‐sensitized driven‐equilibrium prepared 3D turbo spin echo (3D MSDE‐TSE)
  publication-title: Magn Reson Med Sci
– volume: 223
  start-page: 566
  year: 2002
  end-page: 573
  article-title: Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium‐enhanced double‐oblique MR imaging initial results
  publication-title: Radiology
– volume: 68
  start-page: 1423
  year: 2012
  end-page: 1438
  article-title: DANTE‐prepared pulse trains: a novel approach to motion‐sensitized and motion‐suppressed quantitative magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 63
  start-page: 553
  year: 2010
  end-page: 561
  article-title: Contrast‐enhanced, three‐dimensional, whole‐brain, black‐blood imaging: application to small brain metastases
  publication-title: Magn Reson Med
– volume: 105
  start-page: 181
  year: 2002
  end-page: 185
  article-title: Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke
  publication-title: Circulation
– volume: 33
  start-page: 755
  year: 2012
  end-page: 760
  article-title: Carotid plaque neovascularization and hemorrhage detected by MR imaging are associated with recent cerebrovascular ischemic events
  publication-title: AJNR Am J Neuroradiol
– volume: 316
  start-page: 1371
  year: 1987
  end-page: 1375
  article-title: Compensatory enlargement of human atherosclerotic coronary arteries
  publication-title: N Engl J Med
– volume: 60
  start-page: 640
  year: 2008
  end-page: 649
  article-title: Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo
  publication-title: Magn Reson Med
– volume: 42
  start-page: 2478
  year: 2011
  end-page: 2484
  article-title: Intracranial vessel wall imaging at 7.0‐T MRI
  publication-title: Stroke
– volume: 273
  start-page: 560
  year: 2014
  end-page: 569
  article-title: Black‐blood multicontrast imaging of carotid arteries with DANTE‐prepared 2D and 3D MR imaging
  publication-title: Radiology
– volume: 1
  start-page: 158
  year: 2006
  end-page: 159
  article-title: Global burden of intracranial atherosclerosis
  publication-title: Int J Stroke
– volume: 47
  start-page: 434
  year: 2016
  end-page: 440
  article-title: Patterns and implications of intracranial arterial remodeling in stroke patients
  publication-title: Stroke
– volume: 21
  start-page: 643
  year: 2000
  end-page: 646
  article-title: A standardized method for measuring intracranial arterial stenosis
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.22261
– ident: e_1_2_6_6_1
  doi: 10.1056/NEJM198705283162204
– ident: e_1_2_6_22_1
  doi: 10.1021/ja50001a068
– year: 2015
  ident: e_1_2_6_13_1
  article-title: Improved black‐blood imaging using DANTE‐SPACE for simultaneous carotid and intracranial vessel wall evaluation
  publication-title: Magn Reson Med
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.24142
– ident: e_1_2_6_23_1
  doi: 10.1148/radiol.14131717
– ident: e_1_2_6_9_1
  doi: 10.3174/ajnr.A2863
– ident: e_1_2_6_2_1
  doi: 10.1161/01.STR.27.11.1974
– ident: e_1_2_6_25_1
  doi: 10.1212/WNL.9.5.321
– ident: e_1_2_6_7_1
  doi: 10.1161/hc0202.102121
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.25667
– ident: e_1_2_6_26_1
  doi: 10.1212/01.wnl.0000342470.69739.b3
– ident: e_1_2_6_27_1
  doi: 10.1161/STROKEAHA.116.012970
– ident: e_1_2_6_15_1
  doi: 10.2463/mrms.2013-0047
– ident: e_1_2_6_21_1
  doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
– ident: e_1_2_6_28_1
  doi: 10.1161/STROKEAHA.115.009037
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1552-6569.2009.00414.x
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1747-4949.2006.00045.x
– ident: e_1_2_6_8_1
  doi: 10.1148/radiol.2232010659
– ident: e_1_2_6_17_1
  doi: 10.1002/jmri.22592
– volume: 63
  start-page: 210
  issue: 2
  year: 2008
  ident: e_1_2_6_24_1
  article-title: Microsurgical anatomy and surgical exposure of the petrous segment of the internal carotid artery
  publication-title: Neurosurgery
– volume: 21
  start-page: 643
  year: 2000
  ident: e_1_2_6_5_1
  article-title: A standardized method for measuring intracranial arterial stenosis
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.10391
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.21680
– start-page: 122812
  year: 2014
  ident: e_1_2_6_10_1
  article-title: Intracranial plaque enhancement in patients with cerebrovascular events on high‐spatial‐resolution MR images
  publication-title: Radiology
– ident: e_1_2_6_11_1
  doi: 10.1161/STROKEAHA.111.620443
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.1910400216
SSID ssj0009945
Score 2.3353758
Snippet Purpose To develop and assess a three‐dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved...
To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved...
Purpose To develop and assess a three-dimensional (3D) high resolution black blood MRI (BBMRI) method for evaluation of intracranial vessels with improved...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 665
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Cerebral Angiography - methods
Cerebral Arteries - anatomy & histology
Cerebral Arteries - diagnostic imaging
Cerebrospinal Fluid - cytology
Cerebrospinal Fluid - diagnostic imaging
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
intracranial
isotropic
Magnetic Resonance Angiography - methods
Magnetic resonance imaging
Male
Middle Aged
MRI
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Subtraction Technique
vessel wall
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KB9v6sO9u3rrhsTLYwKm_JMuwlzGWfkDyUFbSlyHOsgRZXTck8b7--p1kx6GjBLY3g0-2pbvT_SSdfwewzyNMypRHgQ4NLVBUZgIKCnEQo-CpEjlGLptwNOZHZ-nJOTvfgg-rf2Fafoh-w816hpuvrYNjsThYk4Z-u5xPBzFFH7v2iRLu1lOna-6oPHcVigk_JEEkwqznJo0P1k2vRaNbdmB_3gQ1d-BOU8_w1w-squso1oWh4X34uupAm31yMWiWxUD9_ovb8X97-ADudfjU_9ga1EPY0vUjuD3qTuAfw3G7C6FLX-k5radt2RHbwFTNtPQXzaxLrK19QsP-1G4dKwqHZOX-d0tTXvm2d_7o9PgJnA0_f_l0FHTlGALFKNYFPClRY4YEIcIiZ0IJxgyhn7KwJJOFpQ40ISKmJguLSCDXOTIyVNRaxSoyyS5s11e1fgZ-kTCT5ByLRGGKTAh6dBkpLUKjmeGZB-9WapGq4yq3JTMq2bIsx9KOjXRj48GbXnbWMnTcKPXWabcXwfmFzWnLmJyMD-XhcJKl43Qi6dV7K_XLzp0XkmBQZGe3PPbgdX-bHNGermCtr5pWhmI7Y5tlGM8JpCcePG1Nq_-gmOcE3mLuwX5vaxs79N7ZzgYReULKdFfP_0X4BdwlVMjbRLo92F7OG_2SkNeyeOU87A9xdSiN
  priority: 102
  providerName: Wiley-Blackwell
Title Improved cerebrospinal fluid suppression for intracranial vessel wall MRI
URI https://api.istex.fr/ark:/67375/WNG-GFW74N4W-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.25211
https://www.ncbi.nlm.nih.gov/pubmed/26950926
https://www.proquest.com/docview/1811042592
https://www.proquest.com/docview/1811299552
https://www.proquest.com/docview/1815690803
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.25211
UnpaywallVersion publishedVersion
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2586
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GAnt82PvhrSseK4MNnNmyJdsfy1j6gIRRFtJ9EmdZgqyeG9J4r79-J8sx7ShhsG8Gn2RLutP9Tjr9BLAnIozLRESBDg0FKCo1ATkFFjDMRKKyHKM2m3AyFYez5PiUn146xe_4IfoFN2sZ7XxtDXxZGjfPd7v77P3Xb6vFiJEHovhnKDih8QEMZ9NP-1_aTU4eB5E7MU1eir7PM9EzlF4ufMUnDW33_rwOcN6BW029xF8_sKquYtnWGY3vAW6a4XJQzkbNuhip338xPP5PO-_D3Q6p-vtOtR7ADV0_hJuTbi_-ERy59Qhd-kqvKLK2F5DYAqZqFqV_0Sy7FNvaJ1zsL-wisiLHSPruf7eE5ZVvW-hPTo4ew2z88fOHw6C7mCFQnLxeIOISNaZIYCIscp6pjHNDOKgsLN1kYUkETYiIiUnDIspQ6Bw5qSxqrZiKTPwEBvV5rZ-BX8TcxLnAIlaYIM8yqrqMlM5Co7kRqQdvN0MjVcdabi_PqKTjW2bS9o1s-8aD173s0nF1XCv1ph3hXgRXZza7LeVyPj2QB-N5mkyTuaRP72xUQHaGfSEJEEV2nsuZB6_612SSdp8Fa33eOBny8pxvl-EiJ7gee_DUqVf_Q0zkBOOY8GCv17etDXrX6s8WEXlMg9k-Pf-3Ol_AbUKGwiXT7cBgvWr0S0Jf62KX4o4TttuZ2R8q4C2e
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejhXV72PeHt27zWBms4NRfku3HUpYmXZOH0pK-ibMsQVbPDUm8j_71vZNdh44S2N4MPtmWdKf7nXT-HWM7IoCoiEXgad9ggKIS46FTCL0QUhGrNIPAZhOOxmJwFh-d8_M2N4f-hWn4IboNN7IMu16TgdOG9N6KNfT7j_m0F6L7weBnMxYYqBAmOlmxR2WZrVGMCCLygtRPOnbScG_V9pY_2qSh_X0X2HzItupqBn9-QVnexrHWEfUfN9VWF5a_kPJPLnr1Mu-pq7_YHf-7j0_YoxaiuvuNTj1l93T1jN0ftYfwz9mw2YjQhav0HENqqjxCDUxZTwt3Uc_a3NrKRUDsTmn3WKFHREV3fxJTeelS99zRyfAFO-t_PT0YeG1FBk9xdHeeiArQkACiCD_PeKpSzg0CoCInnsmc2AONDwCxSfw8SEHoDDjqKmitQhWY6CXbqC4r_Zq5ecRNlAnIIwUx8DTFRxeB0qlvNDcicdiXm3mRqqUrp6oZpWyIlkNJYyPt2DjsUyc7a0g67pT6bKe3E4H5BaW1JVxOxofysD9J4nE8kfjq7Zv5l61FLyQioYAWuCx02MfuNtoiHbBApS_rRgbdO-frZbjIEKdHDnvV6Fb3QaHIEL-FwmE7nbKt7dCuVZ41IvIIJ9NevfkX4Q9sa3A6OpbHw_G3t-wBgkTR5NVts43lvNbvEIgt8_fW3K4B8GQsrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQJg32wDdb2IAgJiSQ0uXLjv2IGN06aIUmpu7Nuji21C1kVdsA46_n7GSphqZK8BYp5yT23fl-ti-_I2SPRZAUKYsCHRpcoKjMBBgU4iAGzlLFBUQum3A4Yken6fEZPWtzc-y_MA0_RLfhZj3DzdfWwfW0MPtL1tDz77NJL8bwg4uf9ZQKbjP6Dk6W7FFCuBrFiCCSIOJh1rGTxvvLtjfi0bod2l-3gc1NcreupnD1E8ryJo51gaj_oKm2Onf8hTb_5KJXL_Ke-v0Xu-N_9_Ehud9CVP9DY1OPyB1dPSYbw_YQ_gkZNBsRuvCVnuGS2lYesQ1MWU8Kf15P29zaykdA7E_s7rHCiIiG7v-wTOWlb7vnD08GT8lp_9O3j0dBW5EhUBTDXcCSAjRkgCgizAXlilNqEAAVueWZzC17oAkBIDVZmEccmBZA0VZBaxWryCTPyFp1Welt4ucJNYlgkCcKUqCc46OLSGkeGk0Nyzzy7lovUrV05bZqRikbouVY2rGRbmw88qaTnTYkHbdKvXXq7URgdmHT2jIqx6NDedgfZ-koHUt89e61_mXr0XOJSCiyE5yIPfK6u42-aA9YoNKXdSOD4Z3S1TKUCcTpiUe2GtvqPihmAvFbzDyy1xnbyg69d8azQkQeozLd1fN_EX5FNr4e9OWXwejzDrmHGJE1aXW7ZG0xq_ULxGGL_KXztj9ctywy
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9swED9GAtv6Ye-Ht254rAw2cOaXZPljGUsfkDDGQrpP4ixLkNV1Qxrv9dfvZDmmHSUM9s3gk-yT7nQ_SaefAPZ4hEmZ8ijQoaEJispMQEEhDmIUPFUix6jNJpxM-eEsPT5hJ5dO8Tt-iH7BzXpGO15bB1-Wxo3z3e5-_P7b2WoxiikC0fxnyBmh8QEMZ9NP-1_bTU6WBJE7MU1Rir7PBO8ZSi8XvhKThrZ5f14HOHfgVlMv8dcPrKqrWLYNRuO7gBs1XA7K6ahZFyP1-y-Gx__R8x7c6ZCqv-9M6z7c0PUDuDnp9uIfwpFbj9Clr_SKZtb2AhJbwFTNovQvmmWXYlv7hIv9hV1EVhQYyd7975awvPKthv7k89EjmI0_fvlwGHQXMwSKUdQLeFKixgwJTIRFzoQSjBnCQWVh6SYLSyJoQkRMTRYWkUCuc2Rksqi1ilVkkscwqM9r_RT8ImEmyTkWicIUmRBUdRkpLUKjmeGZB283XSNVx1puL8-opONbjqVtG9m2jQeve9ml4-q4VupN28O9CK5ObXZbxuR8eiAPxvMsnaZzSZ_e3ZiA7Bz7QhIgiuw4l8cevOpfk0vafRas9XnjZCjKM7ZdhvGc4HriwRNnXv0PxTwnGBdzD_Z6e9uq0LvWfraIyGPqzPbp2b_V-RxuEzLkLpluFwbrVaNfEPpaFy87B_sDHwkstQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+cerebrospinal+fluid+suppression+for+intracranial+vessel+wall+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Yang%2C+Huan&rft.au=Zhang%2C+Xuefeng&rft.au=Qin%2C+Qin&rft.au=Liu%2C+Li&rft.date=2016-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=44&rft.issue=3&rft.spage=665&rft.epage=672&rft_id=info:doi/10.1002%2Fjmri.25211&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_25211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon