Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strateg...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 72; no. 2; pp. 370 - 384 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.10.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2011.08.023 |
Cover
Abstract | Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.
► Novel DBS based on neuronal activity (closed-loop, CL-DBS) is superior to standard DBS ► Corticopallidal CL-DBS yields greater alleviation of parkinsonian akinesia ► Corticopallidal CL-DBS yields greater reduction of oscillatory neuronal discharge ► Pallidopallidal CL-DBS leads to dissociation between discharge rate and patterns |
---|---|
AbstractList | Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized. Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized. ► Novel DBS based on neuronal activity (closed-loop, CL-DBS) is superior to standard DBS ► Corticopallidal CL-DBS yields greater alleviation of parkinsonian akinesia ► Corticopallidal CL-DBS yields greater reduction of oscillatory neuronal discharge ► Pallidopallidal CL-DBS leads to dissociation between discharge rate and patterns Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized. |
Author | Mitelman, Rea Rosin, Boris Israel, Zvi Bergman, Hagai Haber, Suzanne N. Vaadia, Eilon Slovik, Maya Rivlin-Etzion, Michal |
Author_xml | – sequence: 1 givenname: Boris surname: Rosin fullname: Rosin, Boris email: boris.rosin@mail.huji.ac.il organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 2 givenname: Maya surname: Slovik fullname: Slovik, Maya organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 3 givenname: Rea surname: Mitelman fullname: Mitelman, Rea organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 4 givenname: Michal surname: Rivlin-Etzion fullname: Rivlin-Etzion, Michal organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 5 givenname: Suzanne N. surname: Haber fullname: Haber, Suzanne N. organization: Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA – sequence: 6 givenname: Zvi surname: Israel fullname: Israel, Zvi organization: Center for Functional & Restorative Neurosurgery, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 7 givenname: Eilon surname: Vaadia fullname: Vaadia, Eilon organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel – sequence: 8 givenname: Hagai surname: Bergman fullname: Bergman, Hagai organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22017994$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFb4BQJA6cEjyOncQckMqWPxUrgVQ4W44zRV4cO9gJVb89XlI49AA9jaX5vRnPeyfkyAePhDwFWgGF5uW-8rjE4CtGASraVZTVD8gGqGxLDlIekQ3tZFM2rK2PyUlKe0qBCwmPyDHLmlZKviEfty4kHMpdCFNxjjgVb6K2vric7bg4Pdvgi4tUXC4TRhtikVtnI7r8zD3_rfis43frU_A2jY_JwyvtEj65rafk67u3X7Yfyt2n9xfbs11pRF3PJXLZQSewbRgX0A-slw1tW6Z7bUB0mgIDIaXpqDFNP7S10APvoeZs6FsuTX1KxDp38ZO-udbOqSnaUccbBVQdzFF7tZqjDuYo2qlsTta9WHVTDD8WTLMabTLonPYYlqQk5VwyaMU9SNrUjRSQyed3yH1Yos_nKxBcStEAP2x-dkst_YjD3-_-ySEDfAVMDClFvLrvRa_uyIydf4c25xTd_8SvVzHmrH5ajCoZi97gYCOaWQ3B_nvAL8MnxUE |
CitedBy_id | crossref_primary_10_1152_jn_00281_2015 crossref_primary_10_3389_fnins_2019_00780 crossref_primary_10_1016_j_clinph_2015_07_034 crossref_primary_10_1016_j_jneumeth_2020_108621 crossref_primary_10_1212_WNL_0000000000005111 crossref_primary_10_1007_s13246_014_0297_2 crossref_primary_10_1371_journal_pcbi_1006838 crossref_primary_10_1089_ten_teb_2015_0279 crossref_primary_10_1016_j_brs_2017_12_016 crossref_primary_10_1016_j_celrep_2020_02_005 crossref_primary_10_1016_j_cels_2015_08_005 crossref_primary_10_1109_ACCESS_2020_3007517 crossref_primary_10_1016_j_brs_2016_10_005 crossref_primary_10_1016_j_nec_2015_08_012 crossref_primary_10_1126_science_aaa9610 crossref_primary_10_1007_s10827_015_0549_5 crossref_primary_10_1126_scitranslmed_adp1723 crossref_primary_10_1080_14737175_2020_1677465 crossref_primary_10_3389_fphys_2018_00046 crossref_primary_10_3171_2020_4_FOCUS20178 crossref_primary_10_1016_j_ijpsycho_2023_01_005 crossref_primary_10_1016_j_tins_2018_03_015 crossref_primary_10_1016_j_neuron_2015_02_039 crossref_primary_10_1016_j_jneumeth_2014_12_011 crossref_primary_10_3389_fnins_2020_00445 crossref_primary_10_1088_1741_2560_11_2_024001 crossref_primary_10_1523_JNEUROSCI_4676_12_2013 crossref_primary_10_1152_jn_00765_2016 crossref_primary_10_3390_jcm12134427 crossref_primary_10_1109_TBCAS_2019_2930498 crossref_primary_10_1016_j_nbd_2019_02_005 crossref_primary_10_1016_j_jneumeth_2017_10_001 crossref_primary_10_3389_fnagi_2023_1114466 crossref_primary_10_7554_eLife_38346 crossref_primary_10_1016_j_neurom_2023_03_018 crossref_primary_10_1016_j_arcontrol_2022_05_002 crossref_primary_10_1038_s41598_019_42910_7 crossref_primary_10_3389_fnana_2017_00021 crossref_primary_10_1016_j_brs_2021_07_063 crossref_primary_10_1109_TBCAS_2016_2614845 crossref_primary_10_1063_1_5128909 crossref_primary_10_1109_TBCAS_2022_3223988 crossref_primary_10_1186_2190_8567_3_14 crossref_primary_10_1088_1741_2560_11_1_016009 crossref_primary_10_1007_s11517_016_1452_6 crossref_primary_10_1088_1741_2560_10_3_036005 crossref_primary_10_1109_TMBMC_2020_3036756 crossref_primary_10_1007_s11517_012_1013_6 crossref_primary_10_7554_eLife_97184_3 crossref_primary_10_1371_journal_pcbi_1006854 crossref_primary_10_1021_acs_accounts_4c00057 crossref_primary_10_1007_s11517_015_1429_x crossref_primary_10_1109_JSEN_2017_2686642 crossref_primary_10_1007_s00702_017_1736_5 crossref_primary_10_1016_j_jddst_2021_102793 crossref_primary_10_1093_brain_aww284 crossref_primary_10_1063_5_0035327 crossref_primary_10_1227_01_neu_0000428427_68620_ad crossref_primary_10_1007_s11571_023_10042_4 crossref_primary_10_1038_s41593_018_0108_2 crossref_primary_10_3389_fnins_2024_1363128 crossref_primary_10_1523_JNEUROSCI_4144_11_2013 crossref_primary_10_3171_2015_3_FOCUS1542 crossref_primary_10_1016_j_neuron_2011_10_004 crossref_primary_10_1080_17434440_2021_1962286 crossref_primary_10_1016_j_expneurol_2016_07_021 crossref_primary_10_1111_ene_14801 crossref_primary_10_1088_1741_2552_aac43c crossref_primary_10_1038_nrn_2017_25 crossref_primary_10_1073_pnas_1712214114 crossref_primary_10_3389_fnhum_2014_01008 crossref_primary_10_1109_JSSC_2020_2991526 crossref_primary_10_1088_1741_2552_ab7030 crossref_primary_10_1111_joim_12610 crossref_primary_10_1103_PhysRevE_90_032914 crossref_primary_10_1371_journal_pone_0203782 crossref_primary_10_1523_JNEUROSCI_1803_13_2014 crossref_primary_10_1002_mds_25923 crossref_primary_10_1038_s41377_022_01004_2 crossref_primary_10_3233_JAD_180212 crossref_primary_10_1136_jnnp_2015_310972 crossref_primary_10_1016_j_wneu_2016_09_069 crossref_primary_10_2217_nmt_2017_0050 crossref_primary_10_1016_j_brs_2016_03_014 crossref_primary_10_1016_j_clineuro_2022_107516 crossref_primary_10_1038_s41377_021_00580_z crossref_primary_10_3389_fnhum_2020_00071 crossref_primary_10_1126_science_1223154 crossref_primary_10_1177_00236772241302576 crossref_primary_10_1088_1741_2560_12_6_066012 crossref_primary_10_1088_1741_2560_12_6_066013 crossref_primary_10_1371_journal_pone_0182884 crossref_primary_10_2176_nmc_ra_2014_0394 crossref_primary_10_3389_fragi_2022_848219 crossref_primary_10_1586_14737175_2015_1083421 crossref_primary_10_1371_journal_pcbi_1004720 crossref_primary_10_3389_fcteg_2022_1046764 crossref_primary_10_1152_jn_00424_2020 crossref_primary_10_1109_TNSRE_2017_2699223 crossref_primary_10_1016_j_jpsychires_2016_06_016 crossref_primary_10_1016_j_physleta_2023_129232 crossref_primary_10_1038_mp_2014_2 crossref_primary_10_1146_annurev_neuro_070815_013906 crossref_primary_10_1109_TNSRE_2021_3095316 crossref_primary_10_1142_S1793524513500095 crossref_primary_10_1007_s13311_014_0280_3 crossref_primary_10_3389_fnhum_2020_541625 crossref_primary_10_3390_cells10030513 crossref_primary_10_1016_j_neunet_2015_02_005 crossref_primary_10_1016_j_neuroimage_2019_01_072 crossref_primary_10_1073_pnas_1214546110 crossref_primary_10_1088_1741_2552_abcb14 crossref_primary_10_1007_s40592_020_00111_3 crossref_primary_10_1002_ana_23663 crossref_primary_10_1016_j_neuchi_2012_02_006 crossref_primary_10_3389_fphar_2019_01494 crossref_primary_10_1038_srep08451 crossref_primary_10_1111_ene_12537 crossref_primary_10_1016_j_neuroimage_2013_05_084 crossref_primary_10_1016_j_parkreldis_2018_12_015 crossref_primary_10_1038_s41531_024_00829_5 crossref_primary_10_3389_fnhum_2022_1009223 crossref_primary_10_1002_adhm_202300430 crossref_primary_10_1109_MCAS_2020_3027220 crossref_primary_10_1155_2020_3136715 crossref_primary_10_1097_WCO_0b013e3283632d08 crossref_primary_10_1088_1741_2552_aa67a9 crossref_primary_10_1002_cpt_1542 crossref_primary_10_1088_1741_2552_aad96d crossref_primary_10_1088_1741_2552_ab094a crossref_primary_10_5213_inj_2015_19_1_3 crossref_primary_10_1007_s10916_015_0328_x crossref_primary_10_1016_j_automatica_2017_05_011 crossref_primary_10_1016_j_ncl_2013_03_007 crossref_primary_10_1016_j_nbd_2019_104522 crossref_primary_10_1176_appi_focus_20102 crossref_primary_10_1002_ana_23966 crossref_primary_10_3389_fnins_2017_00646 crossref_primary_10_1038_s41591_018_0058_y crossref_primary_10_1126_scitranslmed_aan2742 crossref_primary_10_1142_S0129065714500300 crossref_primary_10_3389_fnins_2017_00401 crossref_primary_10_1016_j_jtbi_2016_09_007 crossref_primary_10_7554_eLife_75253 crossref_primary_10_2139_ssrn_4124479 crossref_primary_10_3233_JAD_210425 crossref_primary_10_1586_14737175_2013_859987 crossref_primary_10_1523_JNEUROSCI_1427_23_2023 crossref_primary_10_3389_fnhum_2021_633655 crossref_primary_10_1016_j_rehab_2015_04_003 crossref_primary_10_2217_nmt_2016_0012 crossref_primary_10_1016_j_csbj_2020_11_012 crossref_primary_10_1126_scitranslmed_3005968 crossref_primary_10_1080_03772063_2021_1962742 crossref_primary_10_1007_s13534_016_0231_5 crossref_primary_10_3389_fncom_2015_00026 crossref_primary_10_1016_j_nhtm_2016_10_001 crossref_primary_10_1016_j_clinph_2023_11_017 crossref_primary_10_2139_ssrn_4619425 crossref_primary_10_1002_mds_115 crossref_primary_10_1155_2017_8492619 crossref_primary_10_1088_1741_2552_abb581 crossref_primary_10_1523_JNEUROSCI_1913_18_2018 crossref_primary_10_1016_j_eswa_2019_02_024 crossref_primary_10_1016_j_expneurol_2012_09_008 crossref_primary_10_3389_fnins_2019_00956 crossref_primary_10_1002_mds_26837 crossref_primary_10_3389_fneur_2020_00886 crossref_primary_10_1016_j_bioactmat_2023_09_004 crossref_primary_10_1063_5_0070036 crossref_primary_10_1016_j_mehy_2019_109360 crossref_primary_10_1186_s12984_017_0295_1 crossref_primary_10_1016_j_chaos_2023_113524 crossref_primary_10_1016_j_cobme_2018_09_007 crossref_primary_10_1111_j_1749_6632_2012_06650_x crossref_primary_10_15424_bioelectronmed_2014_00012 crossref_primary_10_1523_JNEUROSCI_2824_12_2012 crossref_primary_10_1002_cne_23577 crossref_primary_10_1038_s41551_018_0323_x crossref_primary_10_1016_j_brs_2024_01_007 crossref_primary_10_1109_TNNLS_2015_2508599 crossref_primary_10_1007_s11517_021_02470_3 crossref_primary_10_1007_s10827_018_0690_z crossref_primary_10_3389_fnetp_2024_1358146 crossref_primary_10_1002_mds_26703 crossref_primary_10_1126_scitranslmed_aah3532 crossref_primary_10_1038_s41467_023_41128_6 crossref_primary_10_1038_s41531_021_00211_9 crossref_primary_10_1016_j_expneurol_2012_09_013 crossref_primary_10_3389_fbioe_2018_00085 crossref_primary_10_47795_ABEW7471 crossref_primary_10_1016_j_neuroscience_2013_02_043 crossref_primary_10_3389_fnins_2020_00639 crossref_primary_10_1088_1674_1056_ac8cd8 crossref_primary_10_1371_journal_pone_0173363 crossref_primary_10_1007_s00422_015_0678_y crossref_primary_10_1016_j_bspc_2022_103776 crossref_primary_10_1055_s_0044_1786037 crossref_primary_10_3389_fnsys_2016_00030 crossref_primary_10_1073_pnas_2109269118 crossref_primary_10_1016_j_jneumeth_2021_109409 crossref_primary_10_1016_j_medengphy_2016_02_007 crossref_primary_10_1152_jn_00074_2013 crossref_primary_10_1109_TBME_2015_2492921 crossref_primary_10_3389_fnsys_2018_00043 crossref_primary_10_7554_eLife_97184 crossref_primary_10_1016_j_neuroimage_2023_120042 crossref_primary_10_3389_fnins_2020_00408 crossref_primary_10_1016_j_expneurol_2013_02_001 crossref_primary_10_1016_j_brs_2014_01_008 crossref_primary_10_1016_j_crmeth_2021_100010 crossref_primary_10_3390_s21072349 crossref_primary_10_2174_0118715273332140240724093837 crossref_primary_10_1007_s13311_014_0274_1 crossref_primary_10_1080_17434440_2024_2438309 crossref_primary_10_1080_01616412_2024_2407645 crossref_primary_10_1111_ejn_12574 crossref_primary_10_1016_j_neuroimage_2015_11_017 crossref_primary_10_1038_nn_4007 crossref_primary_10_1142_S0218127419300386 crossref_primary_10_1016_j_nbd_2012_03_022 crossref_primary_10_1515_revac_2020_0117 crossref_primary_10_1007_s10439_014_1032_6 crossref_primary_10_3389_fnagi_2015_00252 crossref_primary_10_3389_fnins_2017_00734 crossref_primary_10_1111_j_1460_9568_2012_08108_x crossref_primary_10_5607_en_2018_27_1_57 crossref_primary_10_3389_fnagi_2022_880897 crossref_primary_10_3389_fnsys_2014_00187 crossref_primary_10_1002_mds_25665 crossref_primary_10_1016_j_tins_2023_03_009 crossref_primary_10_1002_mds_26636 crossref_primary_10_1016_j_nantod_2021_101127 crossref_primary_10_1016_j_physa_2015_08_019 crossref_primary_10_1371_journal_pone_0057453 crossref_primary_10_3389_fncom_2023_1119685 crossref_primary_10_1177_01423312221148769 crossref_primary_10_1523_JNEUROSCI_3277_14_2015 crossref_primary_10_1007_s11065_015_9308_7 crossref_primary_10_1007_s11071_021_06833_1 crossref_primary_10_3390_mi9100476 crossref_primary_10_1109_TNSRE_2016_2613412 crossref_primary_10_1016_j_matpr_2022_10_311 crossref_primary_10_1016_j_neubiorev_2013_09_003 crossref_primary_10_1126_science_abi7852 crossref_primary_10_1109_TFUZZ_2018_2856182 crossref_primary_10_1016_j_nec_2013_08_006 crossref_primary_10_1007_s10143_017_0920_2 crossref_primary_10_1088_1741_2552_ab208c crossref_primary_10_1038_s41598_021_00365_9 crossref_primary_10_1111_ane_12547 crossref_primary_10_3389_fnins_2019_00804 crossref_primary_10_4103_1673_5374_206642 crossref_primary_10_1016_j_cobme_2018_08_008 crossref_primary_10_3233_JPD_225053 crossref_primary_10_1021_acsnano_5b01060 crossref_primary_10_1038_srep43253 crossref_primary_10_1126_sciadv_ado5560 crossref_primary_10_1002_ana_23951 crossref_primary_10_1063_1_4817393 crossref_primary_10_3109_00207454_2015_1074225 crossref_primary_10_1177_2398212818776475 crossref_primary_10_1038_srep27344 crossref_primary_10_3233_JPD_181467 crossref_primary_10_1002_adfm_201102232 crossref_primary_10_1007_s13311_016_0426_6 crossref_primary_10_1007_s13534_022_00226_y crossref_primary_10_1016_j_nbd_2020_105119 crossref_primary_10_1016_j_clinph_2014_01_006 crossref_primary_10_1152_jn_00481_2012 crossref_primary_10_1088_1741_2560_13_1_016013 crossref_primary_10_1115_1_4024530 crossref_primary_10_1016_j_pneurobio_2015_07_002 crossref_primary_10_3389_fnana_2018_00113 crossref_primary_10_1152_jn_00216_2015 crossref_primary_10_1523_ENEURO_0140_17_2017 crossref_primary_10_1007_s00422_020_00818_w crossref_primary_10_1088_1741_2552_aad1a8 crossref_primary_10_1002_mds_27741 crossref_primary_10_1016_j_nicl_2015_03_016 crossref_primary_10_1016_j_tics_2018_04_001 crossref_primary_10_1016_j_neubiorev_2024_105719 crossref_primary_10_3389_fnins_2021_620750 crossref_primary_10_1523_JNEUROSCI_3237_12_2013 crossref_primary_10_1002_wcs_1471 crossref_primary_10_1016_j_parkreldis_2016_03_020 crossref_primary_10_3934_era_2023134 crossref_primary_10_1063_5_0076508 crossref_primary_10_1016_j_brs_2022_04_015 crossref_primary_10_1007_s13311_018_00705_0 crossref_primary_10_1109_TBCAS_2024_3374891 crossref_primary_10_1016_j_jneumeth_2016_12_005 crossref_primary_10_1016_j_neunet_2014_12_008 crossref_primary_10_1038_srep30770 crossref_primary_10_1371_journal_pone_0082762 crossref_primary_10_3389_fnins_2018_00237 crossref_primary_10_1152_jn_00527_2011 crossref_primary_10_1371_journal_pone_0207761 crossref_primary_10_1016_j_crneur_2022_100071 crossref_primary_10_3389_fbioe_2016_00030 crossref_primary_10_1016_j_psc_2018_04_003 crossref_primary_10_1631_jzus_C1400152 crossref_primary_10_1038_s41598_022_10130_1 crossref_primary_10_1080_09540261_2017_1282438 crossref_primary_10_1093_pnasnexus_pgae082 crossref_primary_10_1016_j_cnsns_2022_106812 crossref_primary_10_1109_TNSRE_2022_3150325 crossref_primary_10_1016_S1353_8020_13_70044_0 crossref_primary_10_1007_s00429_015_1144_2 crossref_primary_10_1063_5_0019823 crossref_primary_10_1371_journal_pone_0204260 crossref_primary_10_1016_j_brainres_2024_148914 crossref_primary_10_3390_s23167016 crossref_primary_10_1109_JSEN_2020_3048588 crossref_primary_10_1097_WCO_0000000000000034 crossref_primary_10_1002_mds_26663 crossref_primary_10_1007_s11517_015_1442_0 crossref_primary_10_3389_fnagi_2019_00023 crossref_primary_10_1016_j_cnsns_2015_12_005 crossref_primary_10_3389_fnins_2021_750806 crossref_primary_10_1088_1741_2560_12_4_046015 crossref_primary_10_1016_j_jocn_2019_07_056 crossref_primary_10_1088_1741_2560_11_4_046005 crossref_primary_10_1016_j_jneumeth_2015_11_029 crossref_primary_10_1002_mds_26338 crossref_primary_10_1109_TCST_2018_2862397 crossref_primary_10_1371_journal_pone_0171458 crossref_primary_10_1111_j_1749_6632_2012_06608_x crossref_primary_10_3389_frym_2014_00012 crossref_primary_10_1007_s12576_016_0445_4 crossref_primary_10_1016_j_parkreldis_2015_09_028 crossref_primary_10_1016_j_clinph_2018_10_020 crossref_primary_10_3389_fnsys_2017_00093 crossref_primary_10_3390_electronics11101591 crossref_primary_10_3390_jcm13237458 crossref_primary_10_1541_ieejeiss_144_702 crossref_primary_10_4103_1673_5374_228715 crossref_primary_10_1016_j_isci_2020_101589 crossref_primary_10_3389_fnins_2016_00110 crossref_primary_10_1109_MDAT_2015_2480705 crossref_primary_10_1111_ner_12702 crossref_primary_10_1586_14737175_2014_868306 crossref_primary_10_1002_mds_27418 crossref_primary_10_1137_17M114892X crossref_primary_10_1093_braincomms_fcaa074 crossref_primary_10_1159_000364913 crossref_primary_10_1016_j_isci_2019_07_046 crossref_primary_10_18231_j_ijn_2021_010 crossref_primary_10_1016_j_brs_2014_09_017 crossref_primary_10_1155_2017_5151895 crossref_primary_10_1186_s13408_017_0053_5 crossref_primary_10_4103_1673_5374_235220 crossref_primary_10_31590_ejosat_1013879 crossref_primary_10_3389_fnhum_2014_00730 crossref_primary_10_1152_jn_00822_2015 crossref_primary_10_1016_j_expneurol_2012_04_024 crossref_primary_10_1007_s40473_015_0049_y crossref_primary_10_1088_1741_2552_aacdb8 crossref_primary_10_1016_j_neunet_2017_12_001 crossref_primary_10_1371_journal_pcbi_1005054 crossref_primary_10_1109_TNSRE_2021_3056544 crossref_primary_10_4103_1673_5374_160094 crossref_primary_10_3233_JPD_181480 crossref_primary_10_1007_s12311_016_0763_3 crossref_primary_10_1038_s41592_018_0109_9 crossref_primary_10_1523_JNEUROSCI_3071_19_2020 crossref_primary_10_1016_j_neurom_2024_10_012 crossref_primary_10_1073_pnas_1216308110 crossref_primary_10_3389_fnint_2015_00052 crossref_primary_10_1186_s42234_024_00163_4 crossref_primary_10_1007_s00521_015_2071_0 crossref_primary_10_1109_TBCAS_2021_3112756 crossref_primary_10_1016_j_pain_2014_02_013 crossref_primary_10_1088_1741_2560_12_5_056011 crossref_primary_10_1007_s11910_013_0371_2 crossref_primary_10_1073_pnas_1819975116 crossref_primary_10_3389_fnins_2018_00300 crossref_primary_10_1111_ner_12606 crossref_primary_10_1007_s11019_018_9859_5 crossref_primary_10_1088_1741_2552_ac3267 crossref_primary_10_1186_s12984_018_0470_z crossref_primary_10_3390_jpm11010038 crossref_primary_10_3171_2018_1_JNS171859 crossref_primary_10_1002_mds_26343 crossref_primary_10_1063_5_0167555 crossref_primary_10_1093_brain_aww308 crossref_primary_10_1016_j_neuron_2012_09_032 crossref_primary_10_1016_j_snb_2019_127126 crossref_primary_10_1016_j_brainres_2015_03_048 crossref_primary_10_1007_s11910_013_0378_8 crossref_primary_10_1016_j_brs_2017_02_004 crossref_primary_10_1016_j_brs_2017_10_004 crossref_primary_10_1016_j_brs_2013_02_001 crossref_primary_10_3389_fphys_2018_01788 crossref_primary_10_1097_HRP_0000000000000367 crossref_primary_10_1016_j_jtbi_2015_01_040 crossref_primary_10_1016_j_cnsns_2023_107670 crossref_primary_10_1016_j_neuroimage_2016_02_012 crossref_primary_10_1016_j_cub_2018_07_009 crossref_primary_10_1016_j_expneurol_2022_114011 crossref_primary_10_3389_fnetp_2024_1356653 crossref_primary_10_1016_j_celrep_2022_111616 crossref_primary_10_1093_brain_awt271 crossref_primary_10_3390_pr5020030 crossref_primary_10_1097_WCO_0000000000000342 crossref_primary_10_1126_scitranslmed_3008325 crossref_primary_10_1002_mds_27468 crossref_primary_10_1097_WCO_0000000000000226 crossref_primary_10_1109_JTEHM_2019_2937776 crossref_primary_10_1007_s11571_022_09827_w crossref_primary_10_3389_fnins_2021_667447 crossref_primary_10_1007_s00415_023_11873_1 crossref_primary_10_3389_fnins_2019_00152 crossref_primary_10_1111_psyp_14216 crossref_primary_10_1007_s00415_022_11495_z crossref_primary_10_1088_1367_2630_aa7bde crossref_primary_10_1016_j_neucom_2014_10_028 crossref_primary_10_1016_j_expneurol_2022_114140 crossref_primary_10_1038_nn_3997 crossref_primary_10_1109_TMRB_2022_3145650 crossref_primary_10_3389_fnins_2020_00041 crossref_primary_10_1016_j_jneumeth_2012_02_002 crossref_primary_10_1016_j_nec_2022_02_008 crossref_primary_10_1016_j_neurot_2024_e00337 crossref_primary_10_1146_annurev_neuro_071013_013916 crossref_primary_10_3389_fnana_2015_00005 crossref_primary_10_1007_s00701_017_3428_1 crossref_primary_10_1016_j_clinph_2017_07_419 crossref_primary_10_1016_j_neuroimage_2017_05_059 crossref_primary_10_1038_s41587_019_0244_6 crossref_primary_10_1038_s41598_022_10084_4 crossref_primary_10_1038_s41467_017_02753_0 crossref_primary_10_1038_s41598_019_47036_4 crossref_primary_10_1016_j_nbd_2021_105372 crossref_primary_10_1109_TMRB_2021_3095361 crossref_primary_10_1080_2326263X_2016_1207497 crossref_primary_10_1371_journal_pcbi_1005011 crossref_primary_10_1016_S1353_8020_13_70013_0 crossref_primary_10_1016_j_wneu_2018_11_132 crossref_primary_10_1016_j_conb_2018_01_012 crossref_primary_10_3389_fphar_2021_705813 crossref_primary_10_1063_1_4895809 crossref_primary_10_1088_1741_2552_abf8ca crossref_primary_10_1109_TNSRE_2016_2535358 crossref_primary_10_3109_00207454_2014_999268 crossref_primary_10_1038_nature25457 crossref_primary_10_1016_j_nbd_2018_01_001 crossref_primary_10_1007_s13311_018_00691_3 crossref_primary_10_2147_JPRLS_S306244 crossref_primary_10_1109_TNSRE_2019_2952637 crossref_primary_10_1007_s11431_016_0169_8 crossref_primary_10_31887_DCNS_2012_14_4_gbuzsaki crossref_primary_10_1371_journal_pcbi_1006575 crossref_primary_10_1007_s40473_021_00227_8 crossref_primary_10_3389_fneur_2014_00268 crossref_primary_10_1007_s11062_018_9717_3 crossref_primary_10_3389_fphys_2018_00376 crossref_primary_10_1016_j_expneurol_2012_06_012 crossref_primary_10_3171_2018_5_FOCUS18155 crossref_primary_10_1016_j_chaos_2020_110149 crossref_primary_10_1016_j_cub_2014_08_002 crossref_primary_10_1088_1741_2552_ac2f7b crossref_primary_10_1038_s41598_017_01067_x crossref_primary_10_1088_1741_2560_10_3_036019 crossref_primary_10_1002_mds_27022 crossref_primary_10_2217_fnl_13_69 crossref_primary_10_1093_brain_aws023 crossref_primary_10_1080_0954898X_2024_2361799 crossref_primary_10_1038_s41582_019_0166_4 crossref_primary_10_1142_S1793524514500016 crossref_primary_10_1016_j_brs_2021_08_016 crossref_primary_10_1103_PhysRevE_98_052414 crossref_primary_10_1523_JNEUROSCI_1872_15_2016 crossref_primary_10_1007_s11768_024_00227_5 crossref_primary_10_1016_j_neuron_2015_03_036 crossref_primary_10_3171_2016_11_JNS161162 crossref_primary_10_3788_CJL230708 crossref_primary_10_1002_mds_29310 crossref_primary_10_1007_s42242_023_00266_y crossref_primary_10_3389_fneur_2019_00145 crossref_primary_10_1016_j_pneurobio_2015_08_001 crossref_primary_10_1016_j_conb_2014_11_010 crossref_primary_10_1088_1742_6596_2570_1_012033 crossref_primary_10_1088_1741_2552_aae67f crossref_primary_10_3389_fncom_2023_1274575 crossref_primary_10_1016_j_bpsc_2016_12_009 crossref_primary_10_1016_j_expneurol_2012_12_015 crossref_primary_10_1016_j_expneurol_2022_114153 crossref_primary_10_1109_TBCAS_2016_2618319 crossref_primary_10_1371_journal_pone_0155109 crossref_primary_10_1002_mrm_29818 crossref_primary_10_1016_j_brs_2014_07_039 crossref_primary_10_1016_j_tins_2013_09_001 crossref_primary_10_1016_j_jneumeth_2020_108957 crossref_primary_10_3389_fneur_2021_669690 crossref_primary_10_1038_s41587_019_0234_8 crossref_primary_10_1038_srep09921 crossref_primary_10_1007_s11571_023_10040_6 crossref_primary_10_1016_j_parkreldis_2018_03_009 crossref_primary_10_7759_cureus_33780 crossref_primary_10_1038_s41398_018_0165_z crossref_primary_10_3390_ijms24065555 crossref_primary_10_1038_s41598_021_97560_5 crossref_primary_10_1152_jn_00929_2017 crossref_primary_10_1371_journal_pone_0038141 crossref_primary_10_1097_MD_0000000000038152 crossref_primary_10_1126_sciadv_aau1291 |
Cites_doi | 10.1146/annurev.ne.09.030186.002041 10.1523/JNEUROSCI.0971-11.2011 10.1152/jn.00829.2004 10.1016/j.expneurol.2011.06.012 10.1016/j.expneurol.2009.11.012 10.1016/j.nbd.2010.08.012 10.1111/j.1460-9568.2010.07413.x 10.1523/JNEUROSCI.22-18-07850.2002 10.1523/JNEUROSCI.20-22-08559.2000 10.1126/science.2402638 10.1093/brain/awg022 10.1126/science.1146157 10.1016/j.expneurol.2009.04.022 10.1016/j.neunet.2009.08.005 10.1152/jn.00363.2009 10.1523/JNEUROSCI.5295-07.2008 10.1002/mds.22735 10.1001/archneurol.2010.260 10.1016/j.expneurol.2009.05.014 10.1016/S0301-0082(96)00042-1 10.1001/jama.2008.929 10.1016/j.pneurobio.2009.06.003 10.1038/nrn2774 10.1515/JBCPP.2000.11.4.305 10.1523/JNEUROSCI.4848-03.2004 10.1152/jn.00103.2010 10.1097/WCO.0b013e32832d9d67 10.1152/jn.91092.2008 10.1016/0166-2236(90)90107-L 10.1007/s00422-003-0425-7 10.1523/JNEUROSCI.22-11-04639.2002 10.1523/JNEUROSCI.22-07-02855.2002 10.1016/j.jneumeth.2009.10.024 10.1152/jn.2000.84.1.570 10.1016/j.neuron.2006.09.020 10.1152/jn.2000.84.1.289 10.1523/JNEUROSCI.0123-08.2008 10.1088/1741-2560/8/3/036018 10.1002/mds.20961 10.1016/j.clinph.2003.12.024 10.1002/mds.10144 10.1016/S0079-6123(09)17525-8 10.1016/j.expneurol.2008.11.008 10.3389/fnsys.2011.00022 10.1016/S0304-3940(96)12943-8 10.1523/JNEUROSCI.1691-04.2004 10.1111/j.1460-9568.2007.05777.x 10.1002/mds.23346 10.1093/brain/awp315 10.1088/1741-2560/4/2/L03 10.1016/0166-2236(89)90074-X 10.1016/j.tins.2007.05.004 10.1088/1741-2560/7/1/016009 10.1523/JNEUROSCI.3366-04.2004 10.1103/PhysRevLett.94.164102 10.3949/ccjm.75.Suppl_2.S59 10.1152/jn.00333.2004 10.1016/S1353-8020(08)70044-0 10.1016/j.neuroimage.2010.03.068 10.1016/S1567-424X(09)70414-3 10.1152/jn.1994.72.2.507 10.1152/jn.1996.76.3.2083 10.1016/j.expneurol.2009.02.003 10.1016/j.clineuro.2009.10.008 10.1002/mds.10358 10.1152/jn.90372.2008 10.1007/s00221-010-2362-8 10.1002/mds.20957 10.1056/NEJMoa0907083 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. Copyright © 2011 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 20, 2011 |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: Copyright © 2011 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 20, 2011 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 ADTOC UNPAY |
DOI | 10.1016/j.neuron.2011.08.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 384 |
ExternalDocumentID | 10.1016/j.neuron.2011.08.023 3388925541 22017994 10_1016_j_neuron_2011_08_023 S0896627311007768 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1RT 1~5 26- 2WC 3V. 4.4 457 4G. 53G 5RE 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 P2P P6G PQQKQ PROAC RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 ZA5 .55 .GJ 29N 3O- 5VS AAFWJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS FGOYB G-2 ITC MVM OZT R2- X7M ZGI ZKB AGCQF CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 ADTOC UNPAY |
ID | FETCH-LOGICAL-c533t-e498185e762451bd2b960772abac158a0121599c80cc6bd735ad4b1342db749c3 |
IEDL.DBID | UNPAY |
ISSN | 0896-6273 1097-4199 |
IngestDate | Tue Aug 26 13:24:40 EDT 2025 Sun Sep 28 04:22:08 EDT 2025 Wed Oct 01 14:47:54 EDT 2025 Fri Jul 25 11:13:41 EDT 2025 Mon Jul 21 05:56:52 EDT 2025 Thu Apr 24 23:16:11 EDT 2025 Wed Oct 01 02:00:55 EDT 2025 Fri Feb 23 02:11:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-e498185e762451bd2b960772abac158a0121599c80cc6bd735ad4b1342db749c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S0896627311007768/pdf |
PMID | 22017994 |
PQID | 1549956143 |
PQPubID | 2031076 |
PageCount | 15 |
ParticipantIDs | unpaywall_primary_10_1016_j_neuron_2011_08_023 proquest_miscellaneous_904492175 proquest_miscellaneous_900636951 proquest_journals_1549956143 pubmed_primary_22017994 crossref_primary_10_1016_j_neuron_2011_08_023 crossref_citationtrail_10_1016_j_neuron_2011_08_023 elsevier_sciencedirect_doi_10_1016_j_neuron_2011_08_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-20 |
PublicationDateYYYYMMDD | 2011-10-20 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Benabid, Chabardes, Torres, Piallat, Krack, Fraix, Pollak (bib8) 2009; 175 Lafreniere-Roula, Kim, Hutchison, Lozano, Hodaie, Dostrovsky (bib41) 2010; 205 Levy, Hutchison, Lozano, Dostrovsky (bib47) 2002; 22 Tass (bib68) 2003; 89 Hurtado, Rubchinsky, Sigvardt, Wheelock, Pappas (bib36) 2005; 93 Follett, Weaver, Stern, Hur, Harris, Luo, Marks, Rothlind, Sagher, Moy (bib26) 2010; 362 Volkmann, Moro, Pahwa (bib76) 2006; 21 Hammond, Bergman, Brown (bib32) 2007; 30 Parush, Tishby, Bergman (bib61) 2011; 5 Zaidel, Arkadir, Israel, Bergman (bib80) 2009; 22 Raz, Feingold, Zelanskaya, Vaadia, Bergman (bib63) 1996; 76 Baker, Zhang, Vitek (bib4) 2011; 231 Lee, Jeon, Paek, Lim, Kim, Kim (bib46) 2010; 112 Bar-Gad, Elias, Vaadia, Bergman (bib6) 2004; 24 Chan, Starr, Turner (bib17) 2011; 41 Eusebio, Brown (bib24) 2009; 217 Deniau, Degos, Bosch, Maurice (bib19) 2010; 32 Eusebio, Brown (bib23) 2007; 13 Popovych, Hauptmann, Tass (bib62) 2005; 94 Tass, Smirnov, Karavaev, Barnikol, Barnikol, Adamchic, Hauptmann, Pawelcyzk, Maarouf, Sturm (bib69) 2010; 7 Nise (bib60) 2007 Brown (bib14) 2006 Leblois, Meissner, Bioulac, Gross, Hansel, Boraud (bib45) 2007; 26 Moran, Bar-Gad (bib56) 2010; 186 Moro, Lozano, Pollak, Agid, Rehncrona, Volkmann, Kulisevsky, Obeso, Albanese, Hariz (bib58) 2010; 25 Uhlhaas, Singer (bib72) 2010; 11 de Solages, Hill, Koop, Henderson, Bronte-Stewart (bib18) 2010; 221 Redmond, Roth, Sladek (bib65) 1985; 11 Alexander, DeLong, Strick (bib3) 1986; 9 Hutchison, Dostrovsky, Walters, Courtemanche, Boraud, Goldberg, Brown (bib37) 2004; 24 Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Tröster, Vitek (bib20) 2006; 21 McIntyre, Frankenmolle, Wu, Noecker, Alberts (bib53) 2009; 2009 Weaver, Follett, Stern, Hur, Harris, Marks, Rothlind, Sagher, Reda, Moy (bib77) 2009; 301 Carlson, Cleary, Cetas, Heinricher, Burchiel (bib15) 2010; 103 Raz, Vaadia, Bergman (bib64) 2000; 20 Vitek (bib74) 2002; 17 Wichmann, DeLong (bib79) 2006 Heimer, Rivlin, Israel, Bergman (bib34) 2006 Lathi (bib44) 2004 Bronstein, Tagliati, Alterman, Lozano, Volkmann, Stefani, Horak, Okun, Foote, Krack (bib12) 2011; 68 Frank, Samanta, Moustafa, Sherman (bib27) 2007; 318 Mallet, Pogosyan, Sharott, Csicsvari, Bolam, Brown, Magill (bib50) 2008; 28 McCairn, Turner (bib51) 2009; 101 Mikos, Bowers, Noecker, McIntyre, Won, Chaturvedi, Foote, Okun (bib54) 2011; 54 Lozano, Eltahawy (bib48) 2004; 57 Bergman, Wichmann, DeLong (bib9) 1990; 249 Boraud, Bezard, Bioulac, Gross (bib11) 1996; 215 Gubellini, Salin, Kerkerian-Le Goff, Baunez (bib31) 2009; 89 Heimer, Bar-Gad, Goldberg, Bergman (bib33) 2002; 22 McIntyre, Savasta, Kerkerian-Le Goff, Vitek (bib52) 2004; 115 Goldberg, Boraud, Maraton, Haber, Vaadia, Bergman (bib29) 2002; 22 Lalo, Thobois, Sharott, Polo, Mertens, Pogosyan, Brown (bib42) 2008; 28 Stanslaski, Cong, Carlson, Santa, Jensen, Molnar, Marks, Shafquat, Denison (bib67) 2009; 2009 Uhlhaas, Singer (bib71) 2006; 52 Goldberg, Rokni, Boraud, Vaadia, Bergman (bib30) 2004; 24 Johnson, McIntyre (bib38) 2008; 100 Weinberger, Hutchison, Dostrovsky (bib78) 2009; 219 Batista, Lopes, Viana, Batista (bib7) 2010; 23 Kühn, Tsui, Aziz, Ray, Brücke, Kupsch, Schneider, Brown (bib40) 2009; 215 Langston, Irwin, Langston (bib43) 1984; 34 Vitek (bib75) 2008; 75 Bar-Gad, Havazelet-Heimer, Goldberg, Ruppin, Bergman (bib5) 2000; 11 Brown (bib13) 2003; 18 Hill, Mehta, Kleinfeld (bib35) 2011; 31 Nambu, Tokuno, Hamada, Kita, Imanishi, Akazawa, Ikeuchi, Hasegawa (bib59) 2000; 84 Mink (bib55) 1996; 50 Cassim, Labyt, Devos, Defebvre, Destée, Derambure (bib16) 2002; 4 Dostrovsky, Levy, Wu, Hutchison, Tasker, Lozano (bib22) 2000; 84 Frankemolle, Wu, Noecker, Voelcker-Rehage, Ho, Vitek, McIntyre, Alberts (bib28) 2010; 133 Timmermann, Gross, Dirks, Volkmann, Freund, Schnitzler (bib70) 2003; 126 Feng, Greenwald, Rabitz, Shea-Brown, Kosut (bib25) 2007; 4 Rouse, Stanslaski, Cong, Jensen, Afshar, Ullestad, Gupta, Molnar, Moran, Denison (bib66) 2011; 8 Albin, Young, Penney (bib1) 1989; 12 Bergman, Wichmann, Karmon, DeLong (bib10) 1994; 72 Alexander, Crutcher (bib2) 1990; 13 Johnson, Vitek, McIntyre (bib39) 2009; 219 van Rooden, Colas, Martínez-Martín, Visser, Verbaan, Marinus, Chaudhuri, Kok, van Hilten (bib73) 2011; 26 Magill, Sharott, Bolam, Brown (bib49) 2004; 92 Moro, Poon, Lozano, Saint-Cyr, Lang (bib57) 2006; 63 Dorval, Kuncel, Birdno, Turner, Grill (bib21) 2010; 104 Chan (10.1016/j.neuron.2011.08.023_bib17) 2011; 41 Alexander (10.1016/j.neuron.2011.08.023_bib3) 1986; 9 Baker (10.1016/j.neuron.2011.08.023_bib4) 2011; 231 Dorval (10.1016/j.neuron.2011.08.023_bib21) 2010; 104 Leblois (10.1016/j.neuron.2011.08.023_bib45) 2007; 26 Lozano (10.1016/j.neuron.2011.08.023_bib48) 2004; 57 Parush (10.1016/j.neuron.2011.08.023_bib61) 2011; 5 Feng (10.1016/j.neuron.2011.08.023_bib25) 2007; 4 Rouse (10.1016/j.neuron.2011.08.023_bib66) 2011; 8 Raz (10.1016/j.neuron.2011.08.023_bib63) 1996; 76 Boraud (10.1016/j.neuron.2011.08.023_bib11) 1996; 215 Hill (10.1016/j.neuron.2011.08.023_bib35) 2011; 31 Hutchison (10.1016/j.neuron.2011.08.023_bib37) 2004; 24 Uhlhaas (10.1016/j.neuron.2011.08.023_bib71) 2006; 52 Benabid (10.1016/j.neuron.2011.08.023_bib8) 2009; 175 Batista (10.1016/j.neuron.2011.08.023_bib7) 2010; 23 Goldberg (10.1016/j.neuron.2011.08.023_bib29) 2002; 22 Moran (10.1016/j.neuron.2011.08.023_bib56) 2010; 186 Stanslaski (10.1016/j.neuron.2011.08.023_bib67) 2009; 2009 Hammond (10.1016/j.neuron.2011.08.023_bib32) 2007; 30 Timmermann (10.1016/j.neuron.2011.08.023_bib70) 2003; 126 Dostrovsky (10.1016/j.neuron.2011.08.023_bib22) 2000; 84 Brown (10.1016/j.neuron.2011.08.023_bib14) 2006 Weaver (10.1016/j.neuron.2011.08.023_bib77) 2009; 301 Zaidel (10.1016/j.neuron.2011.08.023_bib80) 2009; 22 Bar-Gad (10.1016/j.neuron.2011.08.023_bib5) 2000; 11 Redmond (10.1016/j.neuron.2011.08.023_bib65) 1985; 11 Tass (10.1016/j.neuron.2011.08.023_bib69) 2010; 7 Cassim (10.1016/j.neuron.2011.08.023_bib16) 2002; 4 de Solages (10.1016/j.neuron.2011.08.023_bib18) 2010; 221 Bronstein (10.1016/j.neuron.2011.08.023_bib12) 2011; 68 Heimer (10.1016/j.neuron.2011.08.023_bib34) 2006 Johnson (10.1016/j.neuron.2011.08.023_bib39) 2009; 219 Uhlhaas (10.1016/j.neuron.2011.08.023_bib72) 2010; 11 Raz (10.1016/j.neuron.2011.08.023_bib64) 2000; 20 Magill (10.1016/j.neuron.2011.08.023_bib49) 2004; 92 Gubellini (10.1016/j.neuron.2011.08.023_bib31) 2009; 89 Carlson (10.1016/j.neuron.2011.08.023_bib15) 2010; 103 Frankemolle (10.1016/j.neuron.2011.08.023_bib28) 2010; 133 Levy (10.1016/j.neuron.2011.08.023_bib47) 2002; 22 Moro (10.1016/j.neuron.2011.08.023_bib57) 2006; 63 Bar-Gad (10.1016/j.neuron.2011.08.023_bib6) 2004; 24 Lalo (10.1016/j.neuron.2011.08.023_bib42) 2008; 28 Langston (10.1016/j.neuron.2011.08.023_bib43) 1984; 34 Mikos (10.1016/j.neuron.2011.08.023_bib54) 2011; 54 Deuschl (10.1016/j.neuron.2011.08.023_bib20) 2006; 21 Deniau (10.1016/j.neuron.2011.08.023_bib19) 2010; 32 Lafreniere-Roula (10.1016/j.neuron.2011.08.023_bib41) 2010; 205 Wichmann (10.1016/j.neuron.2011.08.023_bib79) 2006 Kühn (10.1016/j.neuron.2011.08.023_bib40) 2009; 215 Vitek (10.1016/j.neuron.2011.08.023_bib74) 2002; 17 Bergman (10.1016/j.neuron.2011.08.023_bib9) 1990; 249 Albin (10.1016/j.neuron.2011.08.023_bib1) 1989; 12 Volkmann (10.1016/j.neuron.2011.08.023_bib76) 2006; 21 Johnson (10.1016/j.neuron.2011.08.023_bib38) 2008; 100 Mallet (10.1016/j.neuron.2011.08.023_bib50) 2008; 28 McIntyre (10.1016/j.neuron.2011.08.023_bib52) 2004; 115 Follett (10.1016/j.neuron.2011.08.023_bib26) 2010; 362 Alexander (10.1016/j.neuron.2011.08.023_bib2) 1990; 13 McIntyre (10.1016/j.neuron.2011.08.023_bib53) 2009; 2009 Brown (10.1016/j.neuron.2011.08.023_bib13) 2003; 18 Lee (10.1016/j.neuron.2011.08.023_bib46) 2010; 112 Weinberger (10.1016/j.neuron.2011.08.023_bib78) 2009; 219 Popovych (10.1016/j.neuron.2011.08.023_bib62) 2005; 94 Mink (10.1016/j.neuron.2011.08.023_bib55) 1996; 50 Moro (10.1016/j.neuron.2011.08.023_bib58) 2010; 25 van Rooden (10.1016/j.neuron.2011.08.023_bib73) 2011; 26 Hurtado (10.1016/j.neuron.2011.08.023_bib36) 2005; 93 McCairn (10.1016/j.neuron.2011.08.023_bib51) 2009; 101 Eusebio (10.1016/j.neuron.2011.08.023_bib24) 2009; 217 Tass (10.1016/j.neuron.2011.08.023_bib68) 2003; 89 Bergman (10.1016/j.neuron.2011.08.023_bib10) 1994; 72 Heimer (10.1016/j.neuron.2011.08.023_bib33) 2002; 22 Eusebio (10.1016/j.neuron.2011.08.023_bib23) 2007; 13 Lathi (10.1016/j.neuron.2011.08.023_bib44) 2004 Nambu (10.1016/j.neuron.2011.08.023_bib59) 2000; 84 Frank (10.1016/j.neuron.2011.08.023_bib27) 2007; 318 Nise (10.1016/j.neuron.2011.08.023_bib60) 2007 Vitek (10.1016/j.neuron.2011.08.023_bib75) 2008; 75 Goldberg (10.1016/j.neuron.2011.08.023_bib30) 2004; 24 22017983 - Neuron. 2011 Oct 20;72(2):197-8 22423380 - Mov Disord. 2012 Feb;27(2):200 |
References_xml | – start-page: 636 year: 2007 end-page: 690 ident: bib60 article-title: Design via state space publication-title: Control Systems Engineering – volume: 5 start-page: 22 year: 2011 ident: bib61 article-title: Dopaminergic balance between reward maximization and policy complexity publication-title: Front Syst Neurosci – volume: 11 start-page: 100 year: 2010 end-page: 113 ident: bib72 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat. Rev. Neurosci. – volume: 54 start-page: S238 year: 2011 end-page: S246 ident: bib54 article-title: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency publication-title: Neuroimage – volume: 93 start-page: 1569 year: 2005 end-page: 1584 ident: bib36 article-title: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease publication-title: J. Neurophysiol. – volume: 20 start-page: 8559 year: 2000 end-page: 8571 ident: bib64 article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism publication-title: J. Neurosci. – volume: 11 start-page: 166 year: 1985 ident: bib65 article-title: MPTP produces classic parkinsonian syndrome in African green monkeys publication-title: Soc. Neurosci. Abstr. – volume: 103 start-page: 962 year: 2010 end-page: 967 ident: bib15 article-title: Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson's patients publication-title: J. Neurophysiol. – volume: 115 start-page: 1239 year: 2004 end-page: 1248 ident: bib52 article-title: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both publication-title: Clin. Neurophysiol. – volume: 100 start-page: 2549 year: 2008 end-page: 2563 ident: bib38 article-title: Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation publication-title: J. Neurophysiol. – volume: 34 start-page: 268 year: 1984 ident: bib43 article-title: A comparison of the acute and chronic effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans and the squirrel monkey publication-title: Neurology – volume: 21 start-page: S284 year: 2006 end-page: S289 ident: bib76 article-title: Basic algorithms for the programming of deep brain stimulation in Parkinson's disease publication-title: Mov. Disord. – volume: 50 start-page: 381 year: 1996 end-page: 425 ident: bib55 article-title: The basal ganglia: focused selection and inhibition of competing motor programs publication-title: Prog. Neurobiol. – volume: 21 start-page: S219 year: 2006 end-page: S237 ident: bib20 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. – volume: 76 start-page: 2083 year: 1996 end-page: 2088 ident: bib63 article-title: Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates publication-title: J. Neurophysiol. – volume: 22 start-page: 387 year: 2009 end-page: 393 ident: bib80 article-title: Akineto-rigid vs. tremor syndromes in Parkinsonism publication-title: Curr. Opin. Neurol. – volume: 68 start-page: 165 year: 2011 ident: bib12 article-title: Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues publication-title: Arch. Neurol. – volume: 57 start-page: 733 year: 2004 end-page: 736 ident: bib48 article-title: How does DBS work? publication-title: Suppl. Clin. Neurophysiol. – volume: 24 start-page: 7410 year: 2004 end-page: 7419 ident: bib6 article-title: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation publication-title: J. Neurosci. – volume: 205 start-page: 251 year: 2010 end-page: 261 ident: bib41 article-title: High-frequency microstimulation in human globus pallidus and substantia nigra publication-title: Exp. Brain Res. – volume: 112 start-page: 47 year: 2010 end-page: 53 ident: bib46 article-title: Reprogramming guided by the fused images of MRI and CT in subthalamic nucleus stimulation in Parkinson disease publication-title: Clin. Neurol. Neurosurg. – volume: 215 start-page: 380 year: 2009 end-page: 387 ident: bib40 article-title: Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity publication-title: Exp. Neurol. – start-page: 21 year: 2006 end-page: 25 ident: bib79 article-title: Basal ganglia discharge abnormalities in Parkinson's disease publication-title: J. Neural Transm. Suppl. – volume: 231 start-page: 309 year: 2011 end-page: 313 ident: bib4 article-title: Pallidal stimulation: Effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease publication-title: Exp. Neurol. – volume: 301 start-page: 63 year: 2009 end-page: 73 ident: bib77 article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial publication-title: JAMA – volume: 28 start-page: 3008 year: 2008 end-page: 3016 ident: bib42 article-title: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease publication-title: J. Neurosci. – volume: 9 start-page: 357 year: 1986 end-page: 381 ident: bib3 article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex publication-title: Annu. Rev. Neurosci. – volume: 101 start-page: 1941 year: 2009 end-page: 1960 ident: bib51 article-title: Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations publication-title: J. Neurophysiol. – volume: 2009 start-page: 5494 year: 2009 end-page: 5497 ident: bib67 article-title: An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 84 start-page: 289 year: 2000 end-page: 300 ident: bib59 article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey publication-title: J. Neurophysiol. – volume: 18 start-page: 357 year: 2003 end-page: 363 ident: bib13 article-title: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease publication-title: Mov. Disord. – volume: 7 start-page: 16009 year: 2010 ident: bib69 article-title: The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor publication-title: J. Neural Eng. – volume: 84 start-page: 570 year: 2000 end-page: 574 ident: bib22 article-title: Microstimulation-induced inhibition of neuronal firing in human globus pallidus publication-title: J. Neurophysiol. – volume: 13 start-page: 266 year: 1990 end-page: 271 ident: bib2 article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing publication-title: Trends Neurosci. – volume: 30 start-page: 357 year: 2007 end-page: 364 ident: bib32 article-title: Pathological synchronization in Parkinson's disease: networks, models and treatments publication-title: Trends Neurosci. – volume: 362 start-page: 2077 year: 2010 end-page: 2091 ident: bib26 article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease publication-title: N. Engl. J. Med. – volume: 26 start-page: 1701 year: 2007 end-page: 1713 ident: bib45 article-title: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism publication-title: Eur. J. Neurosci. – volume: 41 start-page: 2 year: 2011 end-page: 10 ident: bib17 article-title: Bursts and oscillations as independent properties of neural activity in the parkinsonian globus pallidus internus publication-title: Neurobiol. Dis. – volume: 318 start-page: 1309 year: 2007 end-page: 1312 ident: bib27 article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism publication-title: Science – volume: 11 start-page: 305 year: 2000 end-page: 320 ident: bib5 article-title: Reinforcement-driven dimensionality reduction—a model for information processing in the basal ganglia publication-title: J. Basic Clin. Physiol. Pharmacol. – volume: 72 start-page: 507 year: 1994 end-page: 520 ident: bib10 article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism publication-title: J. Neurophysiol. – volume: 75 start-page: S59 year: 2008 end-page: S65 ident: bib75 article-title: Deep brain stimulation: how does it work? publication-title: Cleve. Clin. J. Med. – volume: 4 start-page: S31 year: 2002 end-page: S45 ident: bib16 article-title: Relationship between oscillations in the basal ganglia and synchronization of cortical activity publication-title: Epileptic Disord. – volume: 249 start-page: 1436 year: 1990 end-page: 1438 ident: bib9 article-title: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus publication-title: Science – volume: 13 start-page: S434 year: 2007 end-page: S436 ident: bib23 article-title: Oscillatory activity in the basal ganglia publication-title: Parkinsonism Relat. Disord. – volume: 89 start-page: 79 year: 2009 end-page: 123 ident: bib31 article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior publication-title: Prog. Neurobiol. – volume: 94 start-page: 164102 year: 2005 ident: bib62 article-title: Effective desynchronization by nonlinear delayed feedback publication-title: Phys. Rev. Lett. – volume: 17 start-page: S69 year: 2002 end-page: S72 ident: bib74 article-title: Mechanisms of deep brain stimulation: excitation or inhibition publication-title: Mov. Disord. – volume: 63 start-page: 1266 year: 2006 end-page: 1272 ident: bib57 article-title: Subthalamic nucleus stimulation: improvements in outcome with reprogramming publication-title: Arch. Neurol. – volume: 52 start-page: 155 year: 2006 end-page: 168 ident: bib71 article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology publication-title: Neuron – volume: 23 start-page: 114 year: 2010 end-page: 124 ident: bib7 article-title: Delayed feedback control of bursting synchronization in a scale-free neuronal network publication-title: Neural Netw. – volume: 25 start-page: 578 year: 2010 end-page: 586 ident: bib58 article-title: Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease publication-title: Mov. Disord. – volume: 22 start-page: 7850 year: 2002 end-page: 7855 ident: bib33 article-title: Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism publication-title: J. Neurosci. – volume: 133 start-page: 746 year: 2010 end-page: 761 ident: bib28 article-title: Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming publication-title: Brain – volume: 221 start-page: 260 year: 2010 end-page: 266 ident: bib18 article-title: Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease publication-title: Exp. Neurol. – year: 2004 ident: bib44 article-title: Linear Systems and Signals – volume: 219 start-page: 359 year: 2009 end-page: 362 ident: bib39 article-title: Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey publication-title: Exp. Neurol. – volume: 32 start-page: 1080 year: 2010 end-page: 1091 ident: bib19 article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition publication-title: Eur. J. Neurosci. – volume: 8 start-page: 036018 year: 2011 ident: bib66 article-title: A chronic generalized bi-directional brain-machine interface publication-title: J. Neural Eng. – volume: 24 start-page: 9240 year: 2004 end-page: 9243 ident: bib37 article-title: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings publication-title: J. Neurosci. – volume: 12 start-page: 366 year: 1989 end-page: 375 ident: bib1 article-title: The functional anatomy of basal ganglia disorders publication-title: Trends Neurosci. – volume: 2009 start-page: 4228 year: 2009 end-page: 4229 ident: bib53 article-title: Customizing deep brain stimulation to the patient using computational models publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 89 start-page: 81 year: 2003 end-page: 88 ident: bib68 article-title: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations publication-title: Biol. Cybern. – volume: 22 start-page: 4639 year: 2002 end-page: 4653 ident: bib29 article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease publication-title: J. Neurosci. – volume: 28 start-page: 4795 year: 2008 end-page: 4806 ident: bib50 article-title: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex publication-title: J. Neurosci. – volume: 219 start-page: 58 year: 2009 end-page: 61 ident: bib78 article-title: Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? publication-title: Exp. Neurol. – start-page: 17 year: 2006 end-page: 20 ident: bib34 article-title: Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease publication-title: J. Neural Transm. Suppl. – volume: 22 start-page: 2855 year: 2002 end-page: 2861 ident: bib47 article-title: Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity publication-title: J. Neurosci. – volume: 26 start-page: 51 year: 2011 end-page: 58 ident: bib73 article-title: Clinical subtypes of Parkinson's disease publication-title: Mov. Disord. – volume: 104 start-page: 911 year: 2010 end-page: 921 ident: bib21 article-title: Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity publication-title: J. Neurophysiol. – volume: 217 start-page: 1 year: 2009 end-page: 3 ident: bib24 article-title: Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander? publication-title: Exp. Neurol. – volume: 4 start-page: L14 year: 2007 end-page: L21 ident: bib25 article-title: Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model publication-title: J. Neural Eng. – volume: 186 start-page: 116 year: 2010 end-page: 129 ident: bib56 article-title: Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals publication-title: J. Neurosci. Methods – volume: 126 start-page: 199 year: 2003 end-page: 212 ident: bib70 article-title: The cerebral oscillatory network of parkinsonian resting tremor publication-title: Brain – volume: 175 start-page: 379 year: 2009 end-page: 391 ident: bib8 article-title: Functional neurosurgery for movement disorders: a historical perspective publication-title: Prog. Brain Res. – start-page: 27 year: 2006 end-page: 30 ident: bib14 article-title: Bad oscillations in Parkinson's disease publication-title: J. Neural Transm. Suppl. – volume: 92 start-page: 2122 year: 2004 end-page: 2136 ident: bib49 article-title: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat publication-title: J. Neurophysiol. – volume: 24 start-page: 6003 year: 2004 end-page: 6010 ident: bib30 article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials publication-title: J. Neurosci. – volume: 31 start-page: 8699 year: 2011 end-page: 8705 ident: bib35 article-title: Quality metrics to accompany spike sorting of extracellular signals publication-title: J. Neurosci. – volume: 215 start-page: 17 year: 1996 end-page: 20 ident: bib11 article-title: High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey publication-title: Neurosci. Lett. – volume: 9 start-page: 357 year: 1986 ident: 10.1016/j.neuron.2011.08.023_bib3 article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.09.030186.002041 – volume: 31 start-page: 8699 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib35 article-title: Quality metrics to accompany spike sorting of extracellular signals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0971-11.2011 – volume: 93 start-page: 1569 year: 2005 ident: 10.1016/j.neuron.2011.08.023_bib36 article-title: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease publication-title: J. Neurophysiol. doi: 10.1152/jn.00829.2004 – volume: 231 start-page: 309 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib4 article-title: Pallidal stimulation: Effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2011.06.012 – volume: 221 start-page: 260 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib18 article-title: Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.11.012 – volume: 41 start-page: 2 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib17 article-title: Bursts and oscillations as independent properties of neural activity in the parkinsonian globus pallidus internus publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.08.012 – volume: 32 start-page: 1080 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib19 article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2010.07413.x – volume: 22 start-page: 7850 year: 2002 ident: 10.1016/j.neuron.2011.08.023_bib33 article-title: Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-18-07850.2002 – volume: 20 start-page: 8559 year: 2000 ident: 10.1016/j.neuron.2011.08.023_bib64 article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-22-08559.2000 – volume: 249 start-page: 1436 year: 1990 ident: 10.1016/j.neuron.2011.08.023_bib9 article-title: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus publication-title: Science doi: 10.1126/science.2402638 – volume: 4 start-page: S31 issue: Suppl 3 year: 2002 ident: 10.1016/j.neuron.2011.08.023_bib16 article-title: Relationship between oscillations in the basal ganglia and synchronization of cortical activity publication-title: Epileptic Disord. – volume: 2009 start-page: 5494 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib67 article-title: An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 126 start-page: 199 year: 2003 ident: 10.1016/j.neuron.2011.08.023_bib70 article-title: The cerebral oscillatory network of parkinsonian resting tremor publication-title: Brain doi: 10.1093/brain/awg022 – volume: 318 start-page: 1309 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib27 article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism publication-title: Science doi: 10.1126/science.1146157 – volume: 219 start-page: 359 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib39 article-title: Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.04.022 – volume: 23 start-page: 114 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib7 article-title: Delayed feedback control of bursting synchronization in a scale-free neuronal network publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.08.005 – volume: 103 start-page: 962 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib15 article-title: Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson's patients publication-title: J. Neurophysiol. doi: 10.1152/jn.00363.2009 – volume: 28 start-page: 3008 year: 2008 ident: 10.1016/j.neuron.2011.08.023_bib42 article-title: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5295-07.2008 – volume: 25 start-page: 578 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib58 article-title: Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.22735 – volume: 68 start-page: 165 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib12 article-title: Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues publication-title: Arch. Neurol. doi: 10.1001/archneurol.2010.260 – volume: 219 start-page: 58 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib78 article-title: Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia? publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.05.014 – volume: 50 start-page: 381 year: 1996 ident: 10.1016/j.neuron.2011.08.023_bib55 article-title: The basal ganglia: focused selection and inhibition of competing motor programs publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(96)00042-1 – start-page: 27 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib14 article-title: Bad oscillations in Parkinson's disease publication-title: J. Neural Transm. Suppl. – start-page: 636 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib60 article-title: Design via state space – volume: 301 start-page: 63 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib77 article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial publication-title: JAMA doi: 10.1001/jama.2008.929 – start-page: 21 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib79 article-title: Basal ganglia discharge abnormalities in Parkinson's disease publication-title: J. Neural Transm. Suppl. – volume: 89 start-page: 79 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib31 article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2009.06.003 – volume: 11 start-page: 100 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib72 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2774 – volume: 2009 start-page: 4228 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib53 article-title: Customizing deep brain stimulation to the patient using computational models publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 11 start-page: 305 year: 2000 ident: 10.1016/j.neuron.2011.08.023_bib5 article-title: Reinforcement-driven dimensionality reduction—a model for information processing in the basal ganglia publication-title: J. Basic Clin. Physiol. Pharmacol. doi: 10.1515/JBCPP.2000.11.4.305 – volume: 24 start-page: 6003 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib30 article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4848-03.2004 – volume: 104 start-page: 911 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib21 article-title: Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity publication-title: J. Neurophysiol. doi: 10.1152/jn.00103.2010 – volume: 22 start-page: 387 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib80 article-title: Akineto-rigid vs. tremor syndromes in Parkinsonism publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e32832d9d67 – volume: 101 start-page: 1941 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib51 article-title: Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations publication-title: J. Neurophysiol. doi: 10.1152/jn.91092.2008 – volume: 13 start-page: 266 year: 1990 ident: 10.1016/j.neuron.2011.08.023_bib2 article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing publication-title: Trends Neurosci. doi: 10.1016/0166-2236(90)90107-L – volume: 63 start-page: 1266 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib57 article-title: Subthalamic nucleus stimulation: improvements in outcome with reprogramming publication-title: Arch. Neurol. – volume: 89 start-page: 81 year: 2003 ident: 10.1016/j.neuron.2011.08.023_bib68 article-title: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0425-7 – volume: 22 start-page: 4639 year: 2002 ident: 10.1016/j.neuron.2011.08.023_bib29 article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-11-04639.2002 – volume: 22 start-page: 2855 year: 2002 ident: 10.1016/j.neuron.2011.08.023_bib47 article-title: Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-07-02855.2002 – volume: 186 start-page: 116 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib56 article-title: Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.10.024 – volume: 84 start-page: 570 year: 2000 ident: 10.1016/j.neuron.2011.08.023_bib22 article-title: Microstimulation-induced inhibition of neuronal firing in human globus pallidus publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.1.570 – volume: 52 start-page: 155 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib71 article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology publication-title: Neuron doi: 10.1016/j.neuron.2006.09.020 – volume: 84 start-page: 289 year: 2000 ident: 10.1016/j.neuron.2011.08.023_bib59 article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.1.289 – year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib44 – volume: 28 start-page: 4795 year: 2008 ident: 10.1016/j.neuron.2011.08.023_bib50 article-title: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0123-08.2008 – volume: 8 start-page: 036018 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib66 article-title: A chronic generalized bi-directional brain-machine interface publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036018 – volume: 21 start-page: S284 issue: Suppl 14 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib76 article-title: Basic algorithms for the programming of deep brain stimulation in Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.20961 – volume: 115 start-page: 1239 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib52 article-title: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.12.024 – volume: 17 start-page: S69 issue: Suppl 3 year: 2002 ident: 10.1016/j.neuron.2011.08.023_bib74 article-title: Mechanisms of deep brain stimulation: excitation or inhibition publication-title: Mov. Disord. doi: 10.1002/mds.10144 – volume: 175 start-page: 379 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib8 article-title: Functional neurosurgery for movement disorders: a historical perspective publication-title: Prog. Brain Res. doi: 10.1016/S0079-6123(09)17525-8 – volume: 215 start-page: 380 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib40 article-title: Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2008.11.008 – volume: 5 start-page: 22 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib61 article-title: Dopaminergic balance between reward maximization and policy complexity publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2011.00022 – volume: 215 start-page: 17 year: 1996 ident: 10.1016/j.neuron.2011.08.023_bib11 article-title: High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(96)12943-8 – volume: 24 start-page: 7410 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib6 article-title: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1691-04.2004 – volume: 26 start-page: 1701 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib45 article-title: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05777.x – volume: 26 start-page: 51 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib73 article-title: Clinical subtypes of Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.23346 – start-page: 17 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib34 article-title: Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease publication-title: J. Neural Transm. Suppl. – volume: 133 start-page: 746 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib28 article-title: Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming publication-title: Brain doi: 10.1093/brain/awp315 – volume: 4 start-page: L14 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib25 article-title: Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/L03 – volume: 12 start-page: 366 year: 1989 ident: 10.1016/j.neuron.2011.08.023_bib1 article-title: The functional anatomy of basal ganglia disorders publication-title: Trends Neurosci. doi: 10.1016/0166-2236(89)90074-X – volume: 30 start-page: 357 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib32 article-title: Pathological synchronization in Parkinson's disease: networks, models and treatments publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.05.004 – volume: 7 start-page: 16009 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib69 article-title: The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/1/016009 – volume: 24 start-page: 9240 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib37 article-title: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3366-04.2004 – volume: 94 start-page: 164102 year: 2005 ident: 10.1016/j.neuron.2011.08.023_bib62 article-title: Effective desynchronization by nonlinear delayed feedback publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.164102 – volume: 11 start-page: 166 year: 1985 ident: 10.1016/j.neuron.2011.08.023_bib65 article-title: MPTP produces classic parkinsonian syndrome in African green monkeys publication-title: Soc. Neurosci. Abstr. – volume: 75 start-page: S59 issue: Suppl 2 year: 2008 ident: 10.1016/j.neuron.2011.08.023_bib75 article-title: Deep brain stimulation: how does it work? publication-title: Cleve. Clin. J. Med. doi: 10.3949/ccjm.75.Suppl_2.S59 – volume: 92 start-page: 2122 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib49 article-title: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat publication-title: J. Neurophysiol. doi: 10.1152/jn.00333.2004 – volume: 13 start-page: S434 issue: Suppl 3 year: 2007 ident: 10.1016/j.neuron.2011.08.023_bib23 article-title: Oscillatory activity in the basal ganglia publication-title: Parkinsonism Relat. Disord. doi: 10.1016/S1353-8020(08)70044-0 – volume: 54 start-page: S238 issue: Suppl 1 year: 2011 ident: 10.1016/j.neuron.2011.08.023_bib54 article-title: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.068 – volume: 57 start-page: 733 year: 2004 ident: 10.1016/j.neuron.2011.08.023_bib48 article-title: How does DBS work? publication-title: Suppl. Clin. Neurophysiol. doi: 10.1016/S1567-424X(09)70414-3 – volume: 72 start-page: 507 year: 1994 ident: 10.1016/j.neuron.2011.08.023_bib10 article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.72.2.507 – volume: 76 start-page: 2083 year: 1996 ident: 10.1016/j.neuron.2011.08.023_bib63 article-title: Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.3.2083 – volume: 34 start-page: 268 issue: Suppl. 1 year: 1984 ident: 10.1016/j.neuron.2011.08.023_bib43 article-title: A comparison of the acute and chronic effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans and the squirrel monkey publication-title: Neurology – volume: 217 start-page: 1 year: 2009 ident: 10.1016/j.neuron.2011.08.023_bib24 article-title: Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander? publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.02.003 – volume: 112 start-page: 47 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib46 article-title: Reprogramming guided by the fused images of MRI and CT in subthalamic nucleus stimulation in Parkinson disease publication-title: Clin. Neurol. Neurosurg. doi: 10.1016/j.clineuro.2009.10.008 – volume: 18 start-page: 357 year: 2003 ident: 10.1016/j.neuron.2011.08.023_bib13 article-title: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease publication-title: Mov. Disord. doi: 10.1002/mds.10358 – volume: 100 start-page: 2549 year: 2008 ident: 10.1016/j.neuron.2011.08.023_bib38 article-title: Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation publication-title: J. Neurophysiol. doi: 10.1152/jn.90372.2008 – volume: 205 start-page: 251 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib41 article-title: High-frequency microstimulation in human globus pallidus and substantia nigra publication-title: Exp. Brain Res. doi: 10.1007/s00221-010-2362-8 – volume: 21 start-page: S219 issue: Suppl 14 year: 2006 ident: 10.1016/j.neuron.2011.08.023_bib20 article-title: Deep brain stimulation: postoperative issues publication-title: Mov. Disord. doi: 10.1002/mds.20957 – volume: 362 start-page: 2077 year: 2010 ident: 10.1016/j.neuron.2011.08.023_bib26 article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0907083 – reference: 22017983 - Neuron. 2011 Oct 20;72(2):197-8 – reference: 22423380 - Mov Disord. 2012 Feb;27(2):200 |
SSID | ssj0014591 |
Score | 2.5764587 |
Snippet | Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 370 |
SubjectTerms | Animals Basal Ganglia - physiopathology Cercopithecus aethiops Deep Brain Stimulation - methods Electrodes Globus Pallidus - physiopathology Monkeys & apes MPTP Poisoning - chemically induced MPTP Poisoning - physiopathology MPTP Poisoning - therapy Neurons - physiology Neurosciences Parkinson Disease, Secondary - chemically induced Parkinson Disease, Secondary - physiopathology Parkinson Disease, Secondary - therapy Parkinson's disease Primates Treatment Outcome |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSgg4INryWNoiHxA3s0lsJ_Fxu21Vnpel0t4s2_GiVNkkanaF9t93Ji9ACIq4xmMpHtszn-2Zbwh5I1ehcFykDLBowoQNDLPSJ0wJGYQGTj4mw3vIz1_iq2vxYSmXe2Q-5MJgWGVv-zub3lrr_su01-a0zvPpIkgVspdzJD1LADWDHeYiaZP4lmfjS4KQXdU8EGYoPaTPtTFeLWdk-YPIM-J_ck-_w8_H5OG2rM3uuymKn1zS5VPypMeSdNb97gHZ8-UhOZqVcI5e7-hb2kZ3ttfmh-RBV3Ryd0Q-zouq8Rn7VFU1Pfe-pmdYJoIuNvm6r-VF3zd0sUUO5OqWQtNs7Yu8XSvlN4p50m3KWN6sn5Hry4uv8yvWl1RgDnDdhnmh0EN7MIFChjaLLJxgAGAba1woU4MMb1IplwbOxTZLuIS5siEXUWYToRx_TvbLqvQvCU1jgYFqq8yZWICXt9zJLFglKpJcehNPCB80qV3PN45lLwo9BJbd6E7_GvWvsRpmxCeEjb3qjm_jHvlkmCT9y7rR4BLu6XkyzKnu922jkbAOU30FNNOxGXYcPqOY0lfbRiuEdTEg07-JCKHgsCcn5EW3WsbBRBHaQCUm5N24fP5ppK_-e6TH5FHURy5GwQnZ39xu_SlAqY193e6VO22MGf0 priority: 102 providerName: Elsevier |
Title | Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism |
URI | https://dx.doi.org/10.1016/j.neuron.2011.08.023 https://www.ncbi.nlm.nih.gov/pubmed/22017994 https://www.proquest.com/docview/1549956143 https://www.proquest.com/docview/900636951 https://www.proquest.com/docview/904492175 http://www.cell.com/article/S0896627311007768/pdf |
UnpaywallVersion | publishedVersion |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: KQ8 dateStart: 19950201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1097-4199 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1097-4199 dateEnd: 20241002 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1097-4199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014591 issn: 0896-6273 databaseCode: AKRWK dateStart: 19880301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwwMc2oDAqPyDe0uXDTuLHbDBtFCa0UlGeIttxUSFNoiURKn89vnwUpAk2nn1-sO_s-5199zuAV2zpUOXR0DJYNLCotIUlmQ4sTpntCBP5iATfIT9c-Gdz-m7BFjvQNy7ErEp8sW7u6G7vjmZ2yJGn3EN6s8Dg46MiWe7C0Mc_pQEM5xcfoy8NWuS-hXLNDycP8IeT9-VyTU5XwxGZ_SbudL2_uaPrcPM-3K2zQmx-iDT9wwWdPoTLvpCnzTz5PqkrOVE_r_M63n51j-BBB0hJ1Mo9hh2d7cF-lJlgfL0hr0mTItq8ve_BnbZz5WYfpidpXurEep_nBXmjdUGOsdcEmVWrddcQjJyXZFYjkXJ-RcxQtNbpqjG47CvBYuum7mxVrg9gfvr208mZ1fVlsJQBh5WlKUc3r809SpkjE1eaMMigdCGFclgokCaOca5CWylfJoHHjMKl41E3kQHlynsCgyzP9DMgoU8x222ZKOFTAxWkp1hiLwPuMo9p4Y_A69UTq460HHtnpHGfnfYtbpUao1JjbKnpeiOwtrOKlrTjBvmg13zcAY8WUMTGr9ww87A3lLg7_GWMrHdYL0zNMNkOm2OLuheZzusy5ogNfQNv_yVCKTcRIxvB09YEt4txXbxIOR3BZGuTt1rp8_-d8ALuuV3Wo2sfwqC6qvVLA8MqOYZhNL38PB3D7vnieNwdw18I2i5p |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NITR4QLABKwzwA-LNNI3tJH7sClPLur10k_pmOY47BaVJtLSa-t_jyy9ACIZ4jW0pts9339l33wF8EKsRN4xH1GHRkPLY0zQWNqSSC2-kneejE7yHvLgMptf861Is92DS5cJgWGWr-xudXmvr9suwXc1hmabDhRdJZC9nSHoWOtT8AB46NOBhXNdsedo_JXDRlM1zvSl27_Ln6iCvmjQy_8Hk6bM_2aff8ecTONjmpd7d6Sz7ySadPYOnLZgk4-Z_n8OezQ_haJw7R3q9Ix9JHd5Z35sfwqOm6uTuCM4nWVHZhM6LoiSfrS3JKdaJIItNum6LeZFZRRZbJEEubolrGq9tltbCkt8QTJSuc8bSav0Crs--XE2mtK2pQI0DdhtquUQTbZ0O5GIUJ37sXBiHsHWszUhEGinehJQm8owJ4iRkwm1WPGLcT-KQS8Newn5e5PYYSBRwjFRbJUYH3Jn5mBmReKtQ-oIJq4MBsG4llWkJx7HuRaa6yLJvqll_heuvsBymzwZA-1FlQ7hxT_-w2yT1i-AoZxPuGXnS7alqD26lkLEOc325ayZ9szty-I6ic1tsKyUR1wUOmv6tC-fSeXtiAK8aaekn4_uoBCUfwKdefP5ppq__e6bv4WB6dTFX89nl-Rt47LdhjL53Avub261963DVJn5Xn5vvnHYdHg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4NHyWCjIB8TN2yS2k_i4FKryqhDLSuVk2Y4XLWSTqJsILb8eTx4LUgUtZ48P9ow939gz3wA8F4uQW8ZT6rFoQrkJNDXCJVRyEYTaRz46w3fID6fxyZy_PRNnOzA0LsSsSnyxbu_ofu8OZ0EqkaecIb1Z4vHxYZUtrsFujH9KI9idn36cfmnRoowpyrU_nDLBH045lMu1OV0tR2Txm7gzYn9zRxfh5i240RSV3vzQef6HCzq-A5-GQp4u8-T7pKnNxP68yOt49dXdhds9ICXTTu4e7LhiD_anhQ_GVxvygrQpou3b-x5c7zpXbvbh3VFerl1G35dlRV45V5GX2GuCzOrlqm8IRt6syaxBIuXynPih6crly9bgiq8Ei63burPlenUf5sevPx-d0L4vA7UeHNbUcYlu3vl7lIvQZJHxYZBH6dpoG4pUI02ckNKmgbWxyRImvMJNyHiUmYRLyx7AqCgL9whIGnPMdltkVsfcQwXDrMiCRSIjwYTT8RjYoB5le9Jy7J2RqyE77ZvqlKpQqQpbakZsDHQ7q-pIOy6RTwbNqx54dIBCeb9yycyDwVBUf_jXClnvsF6Y-2GyHfbHFnWvC1c2ayURG8Ye3v5LhHPpI0YxhoedCW4XE0V4kUo-hsnWJq-00sf_O-EJ3Iz6rMcoOIBRfd64px6G1eZZf_B-AZSsK8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed-Loop+Deep+Brain+Stimulation+Is+Superior+in+Ameliorating+Parkinsonism&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Rosin%2C+Boris&rft.au=Slovik%2C+Maya&rft.au=Mitelman%2C+Rea&rft.au=Rivlin-Etzion%2C+Michal&rft.date=2011-10-20&rft.issn=0896-6273&rft.volume=72&rft.issue=2&rft.spage=370&rft.epage=384&rft_id=info:doi/10.1016%2Fj.neuron.2011.08.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |