Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism

Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strateg...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 72; no. 2; pp. 370 - 384
Main Authors Rosin, Boris, Slovik, Maya, Mitelman, Rea, Rivlin-Etzion, Michal, Haber, Suzanne N., Israel, Zvi, Vaadia, Eilon, Bergman, Hagai
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.10.2011
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2011.08.023

Cover

Abstract Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized. ► Novel DBS based on neuronal activity (closed-loop, CL-DBS) is superior to standard DBS ► Corticopallidal CL-DBS yields greater alleviation of parkinsonian akinesia ► Corticopallidal CL-DBS yields greater reduction of oscillatory neuronal discharge ► Pallidopallidal CL-DBS leads to dissociation between discharge rate and patterns
AbstractList Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized. ► Novel DBS based on neuronal activity (closed-loop, CL-DBS) is superior to standard DBS ► Corticopallidal CL-DBS yields greater alleviation of parkinsonian akinesia ► Corticopallidal CL-DBS yields greater reduction of oscillatory neuronal discharge ► Pallidopallidal CL-DBS leads to dissociation between discharge rate and patterns
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.
Author Mitelman, Rea
Rosin, Boris
Israel, Zvi
Bergman, Hagai
Haber, Suzanne N.
Vaadia, Eilon
Slovik, Maya
Rivlin-Etzion, Michal
Author_xml – sequence: 1
  givenname: Boris
  surname: Rosin
  fullname: Rosin, Boris
  email: boris.rosin@mail.huji.ac.il
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 2
  givenname: Maya
  surname: Slovik
  fullname: Slovik, Maya
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 3
  givenname: Rea
  surname: Mitelman
  fullname: Mitelman, Rea
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 4
  givenname: Michal
  surname: Rivlin-Etzion
  fullname: Rivlin-Etzion, Michal
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 5
  givenname: Suzanne N.
  surname: Haber
  fullname: Haber, Suzanne N.
  organization: Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
– sequence: 6
  givenname: Zvi
  surname: Israel
  fullname: Israel, Zvi
  organization: Center for Functional & Restorative Neurosurgery, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 7
  givenname: Eilon
  surname: Vaadia
  fullname: Vaadia, Eilon
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
– sequence: 8
  givenname: Hagai
  surname: Bergman
  fullname: Bergman, Hagai
  organization: Department of Medical Neurobiology (Physiology), The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical Association School of Medicine and Hadassah University Hospital, Jerusalem 91120, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22017994$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URLeFb4BQJA6cEjyOncQckMqWPxUrgVQ4W44zRV4cO9gJVb89XlI49AA9jaX5vRnPeyfkyAePhDwFWgGF5uW-8rjE4CtGASraVZTVD8gGqGxLDlIekQ3tZFM2rK2PyUlKe0qBCwmPyDHLmlZKviEfty4kHMpdCFNxjjgVb6K2vric7bg4Pdvgi4tUXC4TRhtikVtnI7r8zD3_rfis43frU_A2jY_JwyvtEj65rafk67u3X7Yfyt2n9xfbs11pRF3PJXLZQSewbRgX0A-slw1tW6Z7bUB0mgIDIaXpqDFNP7S10APvoeZs6FsuTX1KxDp38ZO-udbOqSnaUccbBVQdzFF7tZqjDuYo2qlsTta9WHVTDD8WTLMabTLonPYYlqQk5VwyaMU9SNrUjRSQyed3yH1Yos_nKxBcStEAP2x-dkst_YjD3-_-ySEDfAVMDClFvLrvRa_uyIydf4c25xTd_8SvVzHmrH5ajCoZi97gYCOaWQ3B_nvAL8MnxUE
CitedBy_id crossref_primary_10_1152_jn_00281_2015
crossref_primary_10_3389_fnins_2019_00780
crossref_primary_10_1016_j_clinph_2015_07_034
crossref_primary_10_1016_j_jneumeth_2020_108621
crossref_primary_10_1212_WNL_0000000000005111
crossref_primary_10_1007_s13246_014_0297_2
crossref_primary_10_1371_journal_pcbi_1006838
crossref_primary_10_1089_ten_teb_2015_0279
crossref_primary_10_1016_j_brs_2017_12_016
crossref_primary_10_1016_j_celrep_2020_02_005
crossref_primary_10_1016_j_cels_2015_08_005
crossref_primary_10_1109_ACCESS_2020_3007517
crossref_primary_10_1016_j_brs_2016_10_005
crossref_primary_10_1016_j_nec_2015_08_012
crossref_primary_10_1126_science_aaa9610
crossref_primary_10_1007_s10827_015_0549_5
crossref_primary_10_1126_scitranslmed_adp1723
crossref_primary_10_1080_14737175_2020_1677465
crossref_primary_10_3389_fphys_2018_00046
crossref_primary_10_3171_2020_4_FOCUS20178
crossref_primary_10_1016_j_ijpsycho_2023_01_005
crossref_primary_10_1016_j_tins_2018_03_015
crossref_primary_10_1016_j_neuron_2015_02_039
crossref_primary_10_1016_j_jneumeth_2014_12_011
crossref_primary_10_3389_fnins_2020_00445
crossref_primary_10_1088_1741_2560_11_2_024001
crossref_primary_10_1523_JNEUROSCI_4676_12_2013
crossref_primary_10_1152_jn_00765_2016
crossref_primary_10_3390_jcm12134427
crossref_primary_10_1109_TBCAS_2019_2930498
crossref_primary_10_1016_j_nbd_2019_02_005
crossref_primary_10_1016_j_jneumeth_2017_10_001
crossref_primary_10_3389_fnagi_2023_1114466
crossref_primary_10_7554_eLife_38346
crossref_primary_10_1016_j_neurom_2023_03_018
crossref_primary_10_1016_j_arcontrol_2022_05_002
crossref_primary_10_1038_s41598_019_42910_7
crossref_primary_10_3389_fnana_2017_00021
crossref_primary_10_1016_j_brs_2021_07_063
crossref_primary_10_1109_TBCAS_2016_2614845
crossref_primary_10_1063_1_5128909
crossref_primary_10_1109_TBCAS_2022_3223988
crossref_primary_10_1186_2190_8567_3_14
crossref_primary_10_1088_1741_2560_11_1_016009
crossref_primary_10_1007_s11517_016_1452_6
crossref_primary_10_1088_1741_2560_10_3_036005
crossref_primary_10_1109_TMBMC_2020_3036756
crossref_primary_10_1007_s11517_012_1013_6
crossref_primary_10_7554_eLife_97184_3
crossref_primary_10_1371_journal_pcbi_1006854
crossref_primary_10_1021_acs_accounts_4c00057
crossref_primary_10_1007_s11517_015_1429_x
crossref_primary_10_1109_JSEN_2017_2686642
crossref_primary_10_1007_s00702_017_1736_5
crossref_primary_10_1016_j_jddst_2021_102793
crossref_primary_10_1093_brain_aww284
crossref_primary_10_1063_5_0035327
crossref_primary_10_1227_01_neu_0000428427_68620_ad
crossref_primary_10_1007_s11571_023_10042_4
crossref_primary_10_1038_s41593_018_0108_2
crossref_primary_10_3389_fnins_2024_1363128
crossref_primary_10_1523_JNEUROSCI_4144_11_2013
crossref_primary_10_3171_2015_3_FOCUS1542
crossref_primary_10_1016_j_neuron_2011_10_004
crossref_primary_10_1080_17434440_2021_1962286
crossref_primary_10_1016_j_expneurol_2016_07_021
crossref_primary_10_1111_ene_14801
crossref_primary_10_1088_1741_2552_aac43c
crossref_primary_10_1038_nrn_2017_25
crossref_primary_10_1073_pnas_1712214114
crossref_primary_10_3389_fnhum_2014_01008
crossref_primary_10_1109_JSSC_2020_2991526
crossref_primary_10_1088_1741_2552_ab7030
crossref_primary_10_1111_joim_12610
crossref_primary_10_1103_PhysRevE_90_032914
crossref_primary_10_1371_journal_pone_0203782
crossref_primary_10_1523_JNEUROSCI_1803_13_2014
crossref_primary_10_1002_mds_25923
crossref_primary_10_1038_s41377_022_01004_2
crossref_primary_10_3233_JAD_180212
crossref_primary_10_1136_jnnp_2015_310972
crossref_primary_10_1016_j_wneu_2016_09_069
crossref_primary_10_2217_nmt_2017_0050
crossref_primary_10_1016_j_brs_2016_03_014
crossref_primary_10_1016_j_clineuro_2022_107516
crossref_primary_10_1038_s41377_021_00580_z
crossref_primary_10_3389_fnhum_2020_00071
crossref_primary_10_1126_science_1223154
crossref_primary_10_1177_00236772241302576
crossref_primary_10_1088_1741_2560_12_6_066012
crossref_primary_10_1088_1741_2560_12_6_066013
crossref_primary_10_1371_journal_pone_0182884
crossref_primary_10_2176_nmc_ra_2014_0394
crossref_primary_10_3389_fragi_2022_848219
crossref_primary_10_1586_14737175_2015_1083421
crossref_primary_10_1371_journal_pcbi_1004720
crossref_primary_10_3389_fcteg_2022_1046764
crossref_primary_10_1152_jn_00424_2020
crossref_primary_10_1109_TNSRE_2017_2699223
crossref_primary_10_1016_j_jpsychires_2016_06_016
crossref_primary_10_1016_j_physleta_2023_129232
crossref_primary_10_1038_mp_2014_2
crossref_primary_10_1146_annurev_neuro_070815_013906
crossref_primary_10_1109_TNSRE_2021_3095316
crossref_primary_10_1142_S1793524513500095
crossref_primary_10_1007_s13311_014_0280_3
crossref_primary_10_3389_fnhum_2020_541625
crossref_primary_10_3390_cells10030513
crossref_primary_10_1016_j_neunet_2015_02_005
crossref_primary_10_1016_j_neuroimage_2019_01_072
crossref_primary_10_1073_pnas_1214546110
crossref_primary_10_1088_1741_2552_abcb14
crossref_primary_10_1007_s40592_020_00111_3
crossref_primary_10_1002_ana_23663
crossref_primary_10_1016_j_neuchi_2012_02_006
crossref_primary_10_3389_fphar_2019_01494
crossref_primary_10_1038_srep08451
crossref_primary_10_1111_ene_12537
crossref_primary_10_1016_j_neuroimage_2013_05_084
crossref_primary_10_1016_j_parkreldis_2018_12_015
crossref_primary_10_1038_s41531_024_00829_5
crossref_primary_10_3389_fnhum_2022_1009223
crossref_primary_10_1002_adhm_202300430
crossref_primary_10_1109_MCAS_2020_3027220
crossref_primary_10_1155_2020_3136715
crossref_primary_10_1097_WCO_0b013e3283632d08
crossref_primary_10_1088_1741_2552_aa67a9
crossref_primary_10_1002_cpt_1542
crossref_primary_10_1088_1741_2552_aad96d
crossref_primary_10_1088_1741_2552_ab094a
crossref_primary_10_5213_inj_2015_19_1_3
crossref_primary_10_1007_s10916_015_0328_x
crossref_primary_10_1016_j_automatica_2017_05_011
crossref_primary_10_1016_j_ncl_2013_03_007
crossref_primary_10_1016_j_nbd_2019_104522
crossref_primary_10_1176_appi_focus_20102
crossref_primary_10_1002_ana_23966
crossref_primary_10_3389_fnins_2017_00646
crossref_primary_10_1038_s41591_018_0058_y
crossref_primary_10_1126_scitranslmed_aan2742
crossref_primary_10_1142_S0129065714500300
crossref_primary_10_3389_fnins_2017_00401
crossref_primary_10_1016_j_jtbi_2016_09_007
crossref_primary_10_7554_eLife_75253
crossref_primary_10_2139_ssrn_4124479
crossref_primary_10_3233_JAD_210425
crossref_primary_10_1586_14737175_2013_859987
crossref_primary_10_1523_JNEUROSCI_1427_23_2023
crossref_primary_10_3389_fnhum_2021_633655
crossref_primary_10_1016_j_rehab_2015_04_003
crossref_primary_10_2217_nmt_2016_0012
crossref_primary_10_1016_j_csbj_2020_11_012
crossref_primary_10_1126_scitranslmed_3005968
crossref_primary_10_1080_03772063_2021_1962742
crossref_primary_10_1007_s13534_016_0231_5
crossref_primary_10_3389_fncom_2015_00026
crossref_primary_10_1016_j_nhtm_2016_10_001
crossref_primary_10_1016_j_clinph_2023_11_017
crossref_primary_10_2139_ssrn_4619425
crossref_primary_10_1002_mds_115
crossref_primary_10_1155_2017_8492619
crossref_primary_10_1088_1741_2552_abb581
crossref_primary_10_1523_JNEUROSCI_1913_18_2018
crossref_primary_10_1016_j_eswa_2019_02_024
crossref_primary_10_1016_j_expneurol_2012_09_008
crossref_primary_10_3389_fnins_2019_00956
crossref_primary_10_1002_mds_26837
crossref_primary_10_3389_fneur_2020_00886
crossref_primary_10_1016_j_bioactmat_2023_09_004
crossref_primary_10_1063_5_0070036
crossref_primary_10_1016_j_mehy_2019_109360
crossref_primary_10_1186_s12984_017_0295_1
crossref_primary_10_1016_j_chaos_2023_113524
crossref_primary_10_1016_j_cobme_2018_09_007
crossref_primary_10_1111_j_1749_6632_2012_06650_x
crossref_primary_10_15424_bioelectronmed_2014_00012
crossref_primary_10_1523_JNEUROSCI_2824_12_2012
crossref_primary_10_1002_cne_23577
crossref_primary_10_1038_s41551_018_0323_x
crossref_primary_10_1016_j_brs_2024_01_007
crossref_primary_10_1109_TNNLS_2015_2508599
crossref_primary_10_1007_s11517_021_02470_3
crossref_primary_10_1007_s10827_018_0690_z
crossref_primary_10_3389_fnetp_2024_1358146
crossref_primary_10_1002_mds_26703
crossref_primary_10_1126_scitranslmed_aah3532
crossref_primary_10_1038_s41467_023_41128_6
crossref_primary_10_1038_s41531_021_00211_9
crossref_primary_10_1016_j_expneurol_2012_09_013
crossref_primary_10_3389_fbioe_2018_00085
crossref_primary_10_47795_ABEW7471
crossref_primary_10_1016_j_neuroscience_2013_02_043
crossref_primary_10_3389_fnins_2020_00639
crossref_primary_10_1088_1674_1056_ac8cd8
crossref_primary_10_1371_journal_pone_0173363
crossref_primary_10_1007_s00422_015_0678_y
crossref_primary_10_1016_j_bspc_2022_103776
crossref_primary_10_1055_s_0044_1786037
crossref_primary_10_3389_fnsys_2016_00030
crossref_primary_10_1073_pnas_2109269118
crossref_primary_10_1016_j_jneumeth_2021_109409
crossref_primary_10_1016_j_medengphy_2016_02_007
crossref_primary_10_1152_jn_00074_2013
crossref_primary_10_1109_TBME_2015_2492921
crossref_primary_10_3389_fnsys_2018_00043
crossref_primary_10_7554_eLife_97184
crossref_primary_10_1016_j_neuroimage_2023_120042
crossref_primary_10_3389_fnins_2020_00408
crossref_primary_10_1016_j_expneurol_2013_02_001
crossref_primary_10_1016_j_brs_2014_01_008
crossref_primary_10_1016_j_crmeth_2021_100010
crossref_primary_10_3390_s21072349
crossref_primary_10_2174_0118715273332140240724093837
crossref_primary_10_1007_s13311_014_0274_1
crossref_primary_10_1080_17434440_2024_2438309
crossref_primary_10_1080_01616412_2024_2407645
crossref_primary_10_1111_ejn_12574
crossref_primary_10_1016_j_neuroimage_2015_11_017
crossref_primary_10_1038_nn_4007
crossref_primary_10_1142_S0218127419300386
crossref_primary_10_1016_j_nbd_2012_03_022
crossref_primary_10_1515_revac_2020_0117
crossref_primary_10_1007_s10439_014_1032_6
crossref_primary_10_3389_fnagi_2015_00252
crossref_primary_10_3389_fnins_2017_00734
crossref_primary_10_1111_j_1460_9568_2012_08108_x
crossref_primary_10_5607_en_2018_27_1_57
crossref_primary_10_3389_fnagi_2022_880897
crossref_primary_10_3389_fnsys_2014_00187
crossref_primary_10_1002_mds_25665
crossref_primary_10_1016_j_tins_2023_03_009
crossref_primary_10_1002_mds_26636
crossref_primary_10_1016_j_nantod_2021_101127
crossref_primary_10_1016_j_physa_2015_08_019
crossref_primary_10_1371_journal_pone_0057453
crossref_primary_10_3389_fncom_2023_1119685
crossref_primary_10_1177_01423312221148769
crossref_primary_10_1523_JNEUROSCI_3277_14_2015
crossref_primary_10_1007_s11065_015_9308_7
crossref_primary_10_1007_s11071_021_06833_1
crossref_primary_10_3390_mi9100476
crossref_primary_10_1109_TNSRE_2016_2613412
crossref_primary_10_1016_j_matpr_2022_10_311
crossref_primary_10_1016_j_neubiorev_2013_09_003
crossref_primary_10_1126_science_abi7852
crossref_primary_10_1109_TFUZZ_2018_2856182
crossref_primary_10_1016_j_nec_2013_08_006
crossref_primary_10_1007_s10143_017_0920_2
crossref_primary_10_1088_1741_2552_ab208c
crossref_primary_10_1038_s41598_021_00365_9
crossref_primary_10_1111_ane_12547
crossref_primary_10_3389_fnins_2019_00804
crossref_primary_10_4103_1673_5374_206642
crossref_primary_10_1016_j_cobme_2018_08_008
crossref_primary_10_3233_JPD_225053
crossref_primary_10_1021_acsnano_5b01060
crossref_primary_10_1038_srep43253
crossref_primary_10_1126_sciadv_ado5560
crossref_primary_10_1002_ana_23951
crossref_primary_10_1063_1_4817393
crossref_primary_10_3109_00207454_2015_1074225
crossref_primary_10_1177_2398212818776475
crossref_primary_10_1038_srep27344
crossref_primary_10_3233_JPD_181467
crossref_primary_10_1002_adfm_201102232
crossref_primary_10_1007_s13311_016_0426_6
crossref_primary_10_1007_s13534_022_00226_y
crossref_primary_10_1016_j_nbd_2020_105119
crossref_primary_10_1016_j_clinph_2014_01_006
crossref_primary_10_1152_jn_00481_2012
crossref_primary_10_1088_1741_2560_13_1_016013
crossref_primary_10_1115_1_4024530
crossref_primary_10_1016_j_pneurobio_2015_07_002
crossref_primary_10_3389_fnana_2018_00113
crossref_primary_10_1152_jn_00216_2015
crossref_primary_10_1523_ENEURO_0140_17_2017
crossref_primary_10_1007_s00422_020_00818_w
crossref_primary_10_1088_1741_2552_aad1a8
crossref_primary_10_1002_mds_27741
crossref_primary_10_1016_j_nicl_2015_03_016
crossref_primary_10_1016_j_tics_2018_04_001
crossref_primary_10_1016_j_neubiorev_2024_105719
crossref_primary_10_3389_fnins_2021_620750
crossref_primary_10_1523_JNEUROSCI_3237_12_2013
crossref_primary_10_1002_wcs_1471
crossref_primary_10_1016_j_parkreldis_2016_03_020
crossref_primary_10_3934_era_2023134
crossref_primary_10_1063_5_0076508
crossref_primary_10_1016_j_brs_2022_04_015
crossref_primary_10_1007_s13311_018_00705_0
crossref_primary_10_1109_TBCAS_2024_3374891
crossref_primary_10_1016_j_jneumeth_2016_12_005
crossref_primary_10_1016_j_neunet_2014_12_008
crossref_primary_10_1038_srep30770
crossref_primary_10_1371_journal_pone_0082762
crossref_primary_10_3389_fnins_2018_00237
crossref_primary_10_1152_jn_00527_2011
crossref_primary_10_1371_journal_pone_0207761
crossref_primary_10_1016_j_crneur_2022_100071
crossref_primary_10_3389_fbioe_2016_00030
crossref_primary_10_1016_j_psc_2018_04_003
crossref_primary_10_1631_jzus_C1400152
crossref_primary_10_1038_s41598_022_10130_1
crossref_primary_10_1080_09540261_2017_1282438
crossref_primary_10_1093_pnasnexus_pgae082
crossref_primary_10_1016_j_cnsns_2022_106812
crossref_primary_10_1109_TNSRE_2022_3150325
crossref_primary_10_1016_S1353_8020_13_70044_0
crossref_primary_10_1007_s00429_015_1144_2
crossref_primary_10_1063_5_0019823
crossref_primary_10_1371_journal_pone_0204260
crossref_primary_10_1016_j_brainres_2024_148914
crossref_primary_10_3390_s23167016
crossref_primary_10_1109_JSEN_2020_3048588
crossref_primary_10_1097_WCO_0000000000000034
crossref_primary_10_1002_mds_26663
crossref_primary_10_1007_s11517_015_1442_0
crossref_primary_10_3389_fnagi_2019_00023
crossref_primary_10_1016_j_cnsns_2015_12_005
crossref_primary_10_3389_fnins_2021_750806
crossref_primary_10_1088_1741_2560_12_4_046015
crossref_primary_10_1016_j_jocn_2019_07_056
crossref_primary_10_1088_1741_2560_11_4_046005
crossref_primary_10_1016_j_jneumeth_2015_11_029
crossref_primary_10_1002_mds_26338
crossref_primary_10_1109_TCST_2018_2862397
crossref_primary_10_1371_journal_pone_0171458
crossref_primary_10_1111_j_1749_6632_2012_06608_x
crossref_primary_10_3389_frym_2014_00012
crossref_primary_10_1007_s12576_016_0445_4
crossref_primary_10_1016_j_parkreldis_2015_09_028
crossref_primary_10_1016_j_clinph_2018_10_020
crossref_primary_10_3389_fnsys_2017_00093
crossref_primary_10_3390_electronics11101591
crossref_primary_10_3390_jcm13237458
crossref_primary_10_1541_ieejeiss_144_702
crossref_primary_10_4103_1673_5374_228715
crossref_primary_10_1016_j_isci_2020_101589
crossref_primary_10_3389_fnins_2016_00110
crossref_primary_10_1109_MDAT_2015_2480705
crossref_primary_10_1111_ner_12702
crossref_primary_10_1586_14737175_2014_868306
crossref_primary_10_1002_mds_27418
crossref_primary_10_1137_17M114892X
crossref_primary_10_1093_braincomms_fcaa074
crossref_primary_10_1159_000364913
crossref_primary_10_1016_j_isci_2019_07_046
crossref_primary_10_18231_j_ijn_2021_010
crossref_primary_10_1016_j_brs_2014_09_017
crossref_primary_10_1155_2017_5151895
crossref_primary_10_1186_s13408_017_0053_5
crossref_primary_10_4103_1673_5374_235220
crossref_primary_10_31590_ejosat_1013879
crossref_primary_10_3389_fnhum_2014_00730
crossref_primary_10_1152_jn_00822_2015
crossref_primary_10_1016_j_expneurol_2012_04_024
crossref_primary_10_1007_s40473_015_0049_y
crossref_primary_10_1088_1741_2552_aacdb8
crossref_primary_10_1016_j_neunet_2017_12_001
crossref_primary_10_1371_journal_pcbi_1005054
crossref_primary_10_1109_TNSRE_2021_3056544
crossref_primary_10_4103_1673_5374_160094
crossref_primary_10_3233_JPD_181480
crossref_primary_10_1007_s12311_016_0763_3
crossref_primary_10_1038_s41592_018_0109_9
crossref_primary_10_1523_JNEUROSCI_3071_19_2020
crossref_primary_10_1016_j_neurom_2024_10_012
crossref_primary_10_1073_pnas_1216308110
crossref_primary_10_3389_fnint_2015_00052
crossref_primary_10_1186_s42234_024_00163_4
crossref_primary_10_1007_s00521_015_2071_0
crossref_primary_10_1109_TBCAS_2021_3112756
crossref_primary_10_1016_j_pain_2014_02_013
crossref_primary_10_1088_1741_2560_12_5_056011
crossref_primary_10_1007_s11910_013_0371_2
crossref_primary_10_1073_pnas_1819975116
crossref_primary_10_3389_fnins_2018_00300
crossref_primary_10_1111_ner_12606
crossref_primary_10_1007_s11019_018_9859_5
crossref_primary_10_1088_1741_2552_ac3267
crossref_primary_10_1186_s12984_018_0470_z
crossref_primary_10_3390_jpm11010038
crossref_primary_10_3171_2018_1_JNS171859
crossref_primary_10_1002_mds_26343
crossref_primary_10_1063_5_0167555
crossref_primary_10_1093_brain_aww308
crossref_primary_10_1016_j_neuron_2012_09_032
crossref_primary_10_1016_j_snb_2019_127126
crossref_primary_10_1016_j_brainres_2015_03_048
crossref_primary_10_1007_s11910_013_0378_8
crossref_primary_10_1016_j_brs_2017_02_004
crossref_primary_10_1016_j_brs_2017_10_004
crossref_primary_10_1016_j_brs_2013_02_001
crossref_primary_10_3389_fphys_2018_01788
crossref_primary_10_1097_HRP_0000000000000367
crossref_primary_10_1016_j_jtbi_2015_01_040
crossref_primary_10_1016_j_cnsns_2023_107670
crossref_primary_10_1016_j_neuroimage_2016_02_012
crossref_primary_10_1016_j_cub_2018_07_009
crossref_primary_10_1016_j_expneurol_2022_114011
crossref_primary_10_3389_fnetp_2024_1356653
crossref_primary_10_1016_j_celrep_2022_111616
crossref_primary_10_1093_brain_awt271
crossref_primary_10_3390_pr5020030
crossref_primary_10_1097_WCO_0000000000000342
crossref_primary_10_1126_scitranslmed_3008325
crossref_primary_10_1002_mds_27468
crossref_primary_10_1097_WCO_0000000000000226
crossref_primary_10_1109_JTEHM_2019_2937776
crossref_primary_10_1007_s11571_022_09827_w
crossref_primary_10_3389_fnins_2021_667447
crossref_primary_10_1007_s00415_023_11873_1
crossref_primary_10_3389_fnins_2019_00152
crossref_primary_10_1111_psyp_14216
crossref_primary_10_1007_s00415_022_11495_z
crossref_primary_10_1088_1367_2630_aa7bde
crossref_primary_10_1016_j_neucom_2014_10_028
crossref_primary_10_1016_j_expneurol_2022_114140
crossref_primary_10_1038_nn_3997
crossref_primary_10_1109_TMRB_2022_3145650
crossref_primary_10_3389_fnins_2020_00041
crossref_primary_10_1016_j_jneumeth_2012_02_002
crossref_primary_10_1016_j_nec_2022_02_008
crossref_primary_10_1016_j_neurot_2024_e00337
crossref_primary_10_1146_annurev_neuro_071013_013916
crossref_primary_10_3389_fnana_2015_00005
crossref_primary_10_1007_s00701_017_3428_1
crossref_primary_10_1016_j_clinph_2017_07_419
crossref_primary_10_1016_j_neuroimage_2017_05_059
crossref_primary_10_1038_s41587_019_0244_6
crossref_primary_10_1038_s41598_022_10084_4
crossref_primary_10_1038_s41467_017_02753_0
crossref_primary_10_1038_s41598_019_47036_4
crossref_primary_10_1016_j_nbd_2021_105372
crossref_primary_10_1109_TMRB_2021_3095361
crossref_primary_10_1080_2326263X_2016_1207497
crossref_primary_10_1371_journal_pcbi_1005011
crossref_primary_10_1016_S1353_8020_13_70013_0
crossref_primary_10_1016_j_wneu_2018_11_132
crossref_primary_10_1016_j_conb_2018_01_012
crossref_primary_10_3389_fphar_2021_705813
crossref_primary_10_1063_1_4895809
crossref_primary_10_1088_1741_2552_abf8ca
crossref_primary_10_1109_TNSRE_2016_2535358
crossref_primary_10_3109_00207454_2014_999268
crossref_primary_10_1038_nature25457
crossref_primary_10_1016_j_nbd_2018_01_001
crossref_primary_10_1007_s13311_018_00691_3
crossref_primary_10_2147_JPRLS_S306244
crossref_primary_10_1109_TNSRE_2019_2952637
crossref_primary_10_1007_s11431_016_0169_8
crossref_primary_10_31887_DCNS_2012_14_4_gbuzsaki
crossref_primary_10_1371_journal_pcbi_1006575
crossref_primary_10_1007_s40473_021_00227_8
crossref_primary_10_3389_fneur_2014_00268
crossref_primary_10_1007_s11062_018_9717_3
crossref_primary_10_3389_fphys_2018_00376
crossref_primary_10_1016_j_expneurol_2012_06_012
crossref_primary_10_3171_2018_5_FOCUS18155
crossref_primary_10_1016_j_chaos_2020_110149
crossref_primary_10_1016_j_cub_2014_08_002
crossref_primary_10_1088_1741_2552_ac2f7b
crossref_primary_10_1038_s41598_017_01067_x
crossref_primary_10_1088_1741_2560_10_3_036019
crossref_primary_10_1002_mds_27022
crossref_primary_10_2217_fnl_13_69
crossref_primary_10_1093_brain_aws023
crossref_primary_10_1080_0954898X_2024_2361799
crossref_primary_10_1038_s41582_019_0166_4
crossref_primary_10_1142_S1793524514500016
crossref_primary_10_1016_j_brs_2021_08_016
crossref_primary_10_1103_PhysRevE_98_052414
crossref_primary_10_1523_JNEUROSCI_1872_15_2016
crossref_primary_10_1007_s11768_024_00227_5
crossref_primary_10_1016_j_neuron_2015_03_036
crossref_primary_10_3171_2016_11_JNS161162
crossref_primary_10_3788_CJL230708
crossref_primary_10_1002_mds_29310
crossref_primary_10_1007_s42242_023_00266_y
crossref_primary_10_3389_fneur_2019_00145
crossref_primary_10_1016_j_pneurobio_2015_08_001
crossref_primary_10_1016_j_conb_2014_11_010
crossref_primary_10_1088_1742_6596_2570_1_012033
crossref_primary_10_1088_1741_2552_aae67f
crossref_primary_10_3389_fncom_2023_1274575
crossref_primary_10_1016_j_bpsc_2016_12_009
crossref_primary_10_1016_j_expneurol_2012_12_015
crossref_primary_10_1016_j_expneurol_2022_114153
crossref_primary_10_1109_TBCAS_2016_2618319
crossref_primary_10_1371_journal_pone_0155109
crossref_primary_10_1002_mrm_29818
crossref_primary_10_1016_j_brs_2014_07_039
crossref_primary_10_1016_j_tins_2013_09_001
crossref_primary_10_1016_j_jneumeth_2020_108957
crossref_primary_10_3389_fneur_2021_669690
crossref_primary_10_1038_s41587_019_0234_8
crossref_primary_10_1038_srep09921
crossref_primary_10_1007_s11571_023_10040_6
crossref_primary_10_1016_j_parkreldis_2018_03_009
crossref_primary_10_7759_cureus_33780
crossref_primary_10_1038_s41398_018_0165_z
crossref_primary_10_3390_ijms24065555
crossref_primary_10_1038_s41598_021_97560_5
crossref_primary_10_1152_jn_00929_2017
crossref_primary_10_1371_journal_pone_0038141
crossref_primary_10_1097_MD_0000000000038152
crossref_primary_10_1126_sciadv_aau1291
Cites_doi 10.1146/annurev.ne.09.030186.002041
10.1523/JNEUROSCI.0971-11.2011
10.1152/jn.00829.2004
10.1016/j.expneurol.2011.06.012
10.1016/j.expneurol.2009.11.012
10.1016/j.nbd.2010.08.012
10.1111/j.1460-9568.2010.07413.x
10.1523/JNEUROSCI.22-18-07850.2002
10.1523/JNEUROSCI.20-22-08559.2000
10.1126/science.2402638
10.1093/brain/awg022
10.1126/science.1146157
10.1016/j.expneurol.2009.04.022
10.1016/j.neunet.2009.08.005
10.1152/jn.00363.2009
10.1523/JNEUROSCI.5295-07.2008
10.1002/mds.22735
10.1001/archneurol.2010.260
10.1016/j.expneurol.2009.05.014
10.1016/S0301-0082(96)00042-1
10.1001/jama.2008.929
10.1016/j.pneurobio.2009.06.003
10.1038/nrn2774
10.1515/JBCPP.2000.11.4.305
10.1523/JNEUROSCI.4848-03.2004
10.1152/jn.00103.2010
10.1097/WCO.0b013e32832d9d67
10.1152/jn.91092.2008
10.1016/0166-2236(90)90107-L
10.1007/s00422-003-0425-7
10.1523/JNEUROSCI.22-11-04639.2002
10.1523/JNEUROSCI.22-07-02855.2002
10.1016/j.jneumeth.2009.10.024
10.1152/jn.2000.84.1.570
10.1016/j.neuron.2006.09.020
10.1152/jn.2000.84.1.289
10.1523/JNEUROSCI.0123-08.2008
10.1088/1741-2560/8/3/036018
10.1002/mds.20961
10.1016/j.clinph.2003.12.024
10.1002/mds.10144
10.1016/S0079-6123(09)17525-8
10.1016/j.expneurol.2008.11.008
10.3389/fnsys.2011.00022
10.1016/S0304-3940(96)12943-8
10.1523/JNEUROSCI.1691-04.2004
10.1111/j.1460-9568.2007.05777.x
10.1002/mds.23346
10.1093/brain/awp315
10.1088/1741-2560/4/2/L03
10.1016/0166-2236(89)90074-X
10.1016/j.tins.2007.05.004
10.1088/1741-2560/7/1/016009
10.1523/JNEUROSCI.3366-04.2004
10.1103/PhysRevLett.94.164102
10.3949/ccjm.75.Suppl_2.S59
10.1152/jn.00333.2004
10.1016/S1353-8020(08)70044-0
10.1016/j.neuroimage.2010.03.068
10.1016/S1567-424X(09)70414-3
10.1152/jn.1994.72.2.507
10.1152/jn.1996.76.3.2083
10.1016/j.expneurol.2009.02.003
10.1016/j.clineuro.2009.10.008
10.1002/mds.10358
10.1152/jn.90372.2008
10.1007/s00221-010-2362-8
10.1002/mds.20957
10.1056/NEJMoa0907083
ContentType Journal Article
Copyright 2011 Elsevier Inc.
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Oct 20, 2011
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Oct 20, 2011
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ADTOC
UNPAY
DOI 10.1016/j.neuron.2011.08.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE

MEDLINE - Academic
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 384
ExternalDocumentID 10.1016/j.neuron.2011.08.023
3388925541
22017994
10_1016_j_neuron_2011_08_023
S0896627311007768
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAFWJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
FGOYB
G-2
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c533t-e498185e762451bd2b960772abac158a0121599c80cc6bd735ad4b1342db749c3
IEDL.DBID UNPAY
ISSN 0896-6273
1097-4199
IngestDate Tue Aug 26 13:24:40 EDT 2025
Sun Sep 28 04:22:08 EDT 2025
Wed Oct 01 14:47:54 EDT 2025
Fri Jul 25 11:13:41 EDT 2025
Mon Jul 21 05:56:52 EDT 2025
Thu Apr 24 23:16:11 EDT 2025
Wed Oct 01 02:00:55 EDT 2025
Fri Feb 23 02:11:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-e498185e762451bd2b960772abac158a0121599c80cc6bd735ad4b1342db749c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S0896627311007768/pdf
PMID 22017994
PQID 1549956143
PQPubID 2031076
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_neuron_2011_08_023
proquest_miscellaneous_904492175
proquest_miscellaneous_900636951
proquest_journals_1549956143
pubmed_primary_22017994
crossref_primary_10_1016_j_neuron_2011_08_023
crossref_citationtrail_10_1016_j_neuron_2011_08_023
elsevier_sciencedirect_doi_10_1016_j_neuron_2011_08_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-20
PublicationDateYYYYMMDD 2011-10-20
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2011
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Benabid, Chabardes, Torres, Piallat, Krack, Fraix, Pollak (bib8) 2009; 175
Lafreniere-Roula, Kim, Hutchison, Lozano, Hodaie, Dostrovsky (bib41) 2010; 205
Levy, Hutchison, Lozano, Dostrovsky (bib47) 2002; 22
Tass (bib68) 2003; 89
Hurtado, Rubchinsky, Sigvardt, Wheelock, Pappas (bib36) 2005; 93
Follett, Weaver, Stern, Hur, Harris, Luo, Marks, Rothlind, Sagher, Moy (bib26) 2010; 362
Volkmann, Moro, Pahwa (bib76) 2006; 21
Hammond, Bergman, Brown (bib32) 2007; 30
Parush, Tishby, Bergman (bib61) 2011; 5
Zaidel, Arkadir, Israel, Bergman (bib80) 2009; 22
Raz, Feingold, Zelanskaya, Vaadia, Bergman (bib63) 1996; 76
Baker, Zhang, Vitek (bib4) 2011; 231
Lee, Jeon, Paek, Lim, Kim, Kim (bib46) 2010; 112
Bar-Gad, Elias, Vaadia, Bergman (bib6) 2004; 24
Chan, Starr, Turner (bib17) 2011; 41
Eusebio, Brown (bib24) 2009; 217
Deniau, Degos, Bosch, Maurice (bib19) 2010; 32
Eusebio, Brown (bib23) 2007; 13
Popovych, Hauptmann, Tass (bib62) 2005; 94
Tass, Smirnov, Karavaev, Barnikol, Barnikol, Adamchic, Hauptmann, Pawelcyzk, Maarouf, Sturm (bib69) 2010; 7
Nise (bib60) 2007
Brown (bib14) 2006
Leblois, Meissner, Bioulac, Gross, Hansel, Boraud (bib45) 2007; 26
Moran, Bar-Gad (bib56) 2010; 186
Moro, Lozano, Pollak, Agid, Rehncrona, Volkmann, Kulisevsky, Obeso, Albanese, Hariz (bib58) 2010; 25
Uhlhaas, Singer (bib72) 2010; 11
de Solages, Hill, Koop, Henderson, Bronte-Stewart (bib18) 2010; 221
Redmond, Roth, Sladek (bib65) 1985; 11
Alexander, DeLong, Strick (bib3) 1986; 9
Hutchison, Dostrovsky, Walters, Courtemanche, Boraud, Goldberg, Brown (bib37) 2004; 24
Deuschl, Herzog, Kleiner-Fisman, Kubu, Lozano, Lyons, Rodriguez-Oroz, Tamma, Tröster, Vitek (bib20) 2006; 21
McIntyre, Frankenmolle, Wu, Noecker, Alberts (bib53) 2009; 2009
Weaver, Follett, Stern, Hur, Harris, Marks, Rothlind, Sagher, Reda, Moy (bib77) 2009; 301
Carlson, Cleary, Cetas, Heinricher, Burchiel (bib15) 2010; 103
Raz, Vaadia, Bergman (bib64) 2000; 20
Vitek (bib74) 2002; 17
Wichmann, DeLong (bib79) 2006
Heimer, Rivlin, Israel, Bergman (bib34) 2006
Lathi (bib44) 2004
Bronstein, Tagliati, Alterman, Lozano, Volkmann, Stefani, Horak, Okun, Foote, Krack (bib12) 2011; 68
Frank, Samanta, Moustafa, Sherman (bib27) 2007; 318
Mallet, Pogosyan, Sharott, Csicsvari, Bolam, Brown, Magill (bib50) 2008; 28
McCairn, Turner (bib51) 2009; 101
Mikos, Bowers, Noecker, McIntyre, Won, Chaturvedi, Foote, Okun (bib54) 2011; 54
Lozano, Eltahawy (bib48) 2004; 57
Bergman, Wichmann, DeLong (bib9) 1990; 249
Boraud, Bezard, Bioulac, Gross (bib11) 1996; 215
Gubellini, Salin, Kerkerian-Le Goff, Baunez (bib31) 2009; 89
Heimer, Bar-Gad, Goldberg, Bergman (bib33) 2002; 22
McIntyre, Savasta, Kerkerian-Le Goff, Vitek (bib52) 2004; 115
Goldberg, Boraud, Maraton, Haber, Vaadia, Bergman (bib29) 2002; 22
Lalo, Thobois, Sharott, Polo, Mertens, Pogosyan, Brown (bib42) 2008; 28
Stanslaski, Cong, Carlson, Santa, Jensen, Molnar, Marks, Shafquat, Denison (bib67) 2009; 2009
Uhlhaas, Singer (bib71) 2006; 52
Goldberg, Rokni, Boraud, Vaadia, Bergman (bib30) 2004; 24
Johnson, McIntyre (bib38) 2008; 100
Weinberger, Hutchison, Dostrovsky (bib78) 2009; 219
Batista, Lopes, Viana, Batista (bib7) 2010; 23
Kühn, Tsui, Aziz, Ray, Brücke, Kupsch, Schneider, Brown (bib40) 2009; 215
Langston, Irwin, Langston (bib43) 1984; 34
Vitek (bib75) 2008; 75
Bar-Gad, Havazelet-Heimer, Goldberg, Ruppin, Bergman (bib5) 2000; 11
Brown (bib13) 2003; 18
Hill, Mehta, Kleinfeld (bib35) 2011; 31
Nambu, Tokuno, Hamada, Kita, Imanishi, Akazawa, Ikeuchi, Hasegawa (bib59) 2000; 84
Mink (bib55) 1996; 50
Cassim, Labyt, Devos, Defebvre, Destée, Derambure (bib16) 2002; 4
Dostrovsky, Levy, Wu, Hutchison, Tasker, Lozano (bib22) 2000; 84
Frankemolle, Wu, Noecker, Voelcker-Rehage, Ho, Vitek, McIntyre, Alberts (bib28) 2010; 133
Timmermann, Gross, Dirks, Volkmann, Freund, Schnitzler (bib70) 2003; 126
Feng, Greenwald, Rabitz, Shea-Brown, Kosut (bib25) 2007; 4
Rouse, Stanslaski, Cong, Jensen, Afshar, Ullestad, Gupta, Molnar, Moran, Denison (bib66) 2011; 8
Albin, Young, Penney (bib1) 1989; 12
Bergman, Wichmann, Karmon, DeLong (bib10) 1994; 72
Alexander, Crutcher (bib2) 1990; 13
Johnson, Vitek, McIntyre (bib39) 2009; 219
van Rooden, Colas, Martínez-Martín, Visser, Verbaan, Marinus, Chaudhuri, Kok, van Hilten (bib73) 2011; 26
Magill, Sharott, Bolam, Brown (bib49) 2004; 92
Moro, Poon, Lozano, Saint-Cyr, Lang (bib57) 2006; 63
Dorval, Kuncel, Birdno, Turner, Grill (bib21) 2010; 104
Chan (10.1016/j.neuron.2011.08.023_bib17) 2011; 41
Alexander (10.1016/j.neuron.2011.08.023_bib3) 1986; 9
Baker (10.1016/j.neuron.2011.08.023_bib4) 2011; 231
Dorval (10.1016/j.neuron.2011.08.023_bib21) 2010; 104
Leblois (10.1016/j.neuron.2011.08.023_bib45) 2007; 26
Lozano (10.1016/j.neuron.2011.08.023_bib48) 2004; 57
Parush (10.1016/j.neuron.2011.08.023_bib61) 2011; 5
Feng (10.1016/j.neuron.2011.08.023_bib25) 2007; 4
Rouse (10.1016/j.neuron.2011.08.023_bib66) 2011; 8
Raz (10.1016/j.neuron.2011.08.023_bib63) 1996; 76
Boraud (10.1016/j.neuron.2011.08.023_bib11) 1996; 215
Hill (10.1016/j.neuron.2011.08.023_bib35) 2011; 31
Hutchison (10.1016/j.neuron.2011.08.023_bib37) 2004; 24
Uhlhaas (10.1016/j.neuron.2011.08.023_bib71) 2006; 52
Benabid (10.1016/j.neuron.2011.08.023_bib8) 2009; 175
Batista (10.1016/j.neuron.2011.08.023_bib7) 2010; 23
Goldberg (10.1016/j.neuron.2011.08.023_bib29) 2002; 22
Moran (10.1016/j.neuron.2011.08.023_bib56) 2010; 186
Stanslaski (10.1016/j.neuron.2011.08.023_bib67) 2009; 2009
Hammond (10.1016/j.neuron.2011.08.023_bib32) 2007; 30
Timmermann (10.1016/j.neuron.2011.08.023_bib70) 2003; 126
Dostrovsky (10.1016/j.neuron.2011.08.023_bib22) 2000; 84
Brown (10.1016/j.neuron.2011.08.023_bib14) 2006
Weaver (10.1016/j.neuron.2011.08.023_bib77) 2009; 301
Zaidel (10.1016/j.neuron.2011.08.023_bib80) 2009; 22
Bar-Gad (10.1016/j.neuron.2011.08.023_bib5) 2000; 11
Redmond (10.1016/j.neuron.2011.08.023_bib65) 1985; 11
Tass (10.1016/j.neuron.2011.08.023_bib69) 2010; 7
Cassim (10.1016/j.neuron.2011.08.023_bib16) 2002; 4
de Solages (10.1016/j.neuron.2011.08.023_bib18) 2010; 221
Bronstein (10.1016/j.neuron.2011.08.023_bib12) 2011; 68
Heimer (10.1016/j.neuron.2011.08.023_bib34) 2006
Johnson (10.1016/j.neuron.2011.08.023_bib39) 2009; 219
Uhlhaas (10.1016/j.neuron.2011.08.023_bib72) 2010; 11
Raz (10.1016/j.neuron.2011.08.023_bib64) 2000; 20
Magill (10.1016/j.neuron.2011.08.023_bib49) 2004; 92
Gubellini (10.1016/j.neuron.2011.08.023_bib31) 2009; 89
Carlson (10.1016/j.neuron.2011.08.023_bib15) 2010; 103
Frankemolle (10.1016/j.neuron.2011.08.023_bib28) 2010; 133
Levy (10.1016/j.neuron.2011.08.023_bib47) 2002; 22
Moro (10.1016/j.neuron.2011.08.023_bib57) 2006; 63
Bar-Gad (10.1016/j.neuron.2011.08.023_bib6) 2004; 24
Lalo (10.1016/j.neuron.2011.08.023_bib42) 2008; 28
Langston (10.1016/j.neuron.2011.08.023_bib43) 1984; 34
Mikos (10.1016/j.neuron.2011.08.023_bib54) 2011; 54
Deuschl (10.1016/j.neuron.2011.08.023_bib20) 2006; 21
Deniau (10.1016/j.neuron.2011.08.023_bib19) 2010; 32
Lafreniere-Roula (10.1016/j.neuron.2011.08.023_bib41) 2010; 205
Wichmann (10.1016/j.neuron.2011.08.023_bib79) 2006
Kühn (10.1016/j.neuron.2011.08.023_bib40) 2009; 215
Vitek (10.1016/j.neuron.2011.08.023_bib74) 2002; 17
Bergman (10.1016/j.neuron.2011.08.023_bib9) 1990; 249
Albin (10.1016/j.neuron.2011.08.023_bib1) 1989; 12
Volkmann (10.1016/j.neuron.2011.08.023_bib76) 2006; 21
Johnson (10.1016/j.neuron.2011.08.023_bib38) 2008; 100
Mallet (10.1016/j.neuron.2011.08.023_bib50) 2008; 28
McIntyre (10.1016/j.neuron.2011.08.023_bib52) 2004; 115
Follett (10.1016/j.neuron.2011.08.023_bib26) 2010; 362
Alexander (10.1016/j.neuron.2011.08.023_bib2) 1990; 13
McIntyre (10.1016/j.neuron.2011.08.023_bib53) 2009; 2009
Brown (10.1016/j.neuron.2011.08.023_bib13) 2003; 18
Lee (10.1016/j.neuron.2011.08.023_bib46) 2010; 112
Weinberger (10.1016/j.neuron.2011.08.023_bib78) 2009; 219
Popovych (10.1016/j.neuron.2011.08.023_bib62) 2005; 94
Mink (10.1016/j.neuron.2011.08.023_bib55) 1996; 50
Moro (10.1016/j.neuron.2011.08.023_bib58) 2010; 25
van Rooden (10.1016/j.neuron.2011.08.023_bib73) 2011; 26
Hurtado (10.1016/j.neuron.2011.08.023_bib36) 2005; 93
McCairn (10.1016/j.neuron.2011.08.023_bib51) 2009; 101
Eusebio (10.1016/j.neuron.2011.08.023_bib24) 2009; 217
Tass (10.1016/j.neuron.2011.08.023_bib68) 2003; 89
Bergman (10.1016/j.neuron.2011.08.023_bib10) 1994; 72
Heimer (10.1016/j.neuron.2011.08.023_bib33) 2002; 22
Eusebio (10.1016/j.neuron.2011.08.023_bib23) 2007; 13
Lathi (10.1016/j.neuron.2011.08.023_bib44) 2004
Nambu (10.1016/j.neuron.2011.08.023_bib59) 2000; 84
Frank (10.1016/j.neuron.2011.08.023_bib27) 2007; 318
Nise (10.1016/j.neuron.2011.08.023_bib60) 2007
Vitek (10.1016/j.neuron.2011.08.023_bib75) 2008; 75
Goldberg (10.1016/j.neuron.2011.08.023_bib30) 2004; 24
22017983 - Neuron. 2011 Oct 20;72(2):197-8
22423380 - Mov Disord. 2012 Feb;27(2):200
References_xml – start-page: 636
  year: 2007
  end-page: 690
  ident: bib60
  article-title: Design via state space
  publication-title: Control Systems Engineering
– volume: 5
  start-page: 22
  year: 2011
  ident: bib61
  article-title: Dopaminergic balance between reward maximization and policy complexity
  publication-title: Front Syst Neurosci
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: bib72
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
– volume: 54
  start-page: S238
  year: 2011
  end-page: S246
  ident: bib54
  article-title: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency
  publication-title: Neuroimage
– volume: 93
  start-page: 1569
  year: 2005
  end-page: 1584
  ident: bib36
  article-title: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease
  publication-title: J. Neurophysiol.
– volume: 20
  start-page: 8559
  year: 2000
  end-page: 8571
  ident: bib64
  article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism
  publication-title: J. Neurosci.
– volume: 11
  start-page: 166
  year: 1985
  ident: bib65
  article-title: MPTP produces classic parkinsonian syndrome in African green monkeys
  publication-title: Soc. Neurosci. Abstr.
– volume: 103
  start-page: 962
  year: 2010
  end-page: 967
  ident: bib15
  article-title: Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson's patients
  publication-title: J. Neurophysiol.
– volume: 115
  start-page: 1239
  year: 2004
  end-page: 1248
  ident: bib52
  article-title: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both
  publication-title: Clin. Neurophysiol.
– volume: 100
  start-page: 2549
  year: 2008
  end-page: 2563
  ident: bib38
  article-title: Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation
  publication-title: J. Neurophysiol.
– volume: 34
  start-page: 268
  year: 1984
  ident: bib43
  article-title: A comparison of the acute and chronic effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans and the squirrel monkey
  publication-title: Neurology
– volume: 21
  start-page: S284
  year: 2006
  end-page: S289
  ident: bib76
  article-title: Basic algorithms for the programming of deep brain stimulation in Parkinson's disease
  publication-title: Mov. Disord.
– volume: 50
  start-page: 381
  year: 1996
  end-page: 425
  ident: bib55
  article-title: The basal ganglia: focused selection and inhibition of competing motor programs
  publication-title: Prog. Neurobiol.
– volume: 21
  start-page: S219
  year: 2006
  end-page: S237
  ident: bib20
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord.
– volume: 76
  start-page: 2083
  year: 1996
  end-page: 2088
  ident: bib63
  article-title: Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates
  publication-title: J. Neurophysiol.
– volume: 22
  start-page: 387
  year: 2009
  end-page: 393
  ident: bib80
  article-title: Akineto-rigid vs. tremor syndromes in Parkinsonism
  publication-title: Curr. Opin. Neurol.
– volume: 68
  start-page: 165
  year: 2011
  ident: bib12
  article-title: Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues
  publication-title: Arch. Neurol.
– volume: 57
  start-page: 733
  year: 2004
  end-page: 736
  ident: bib48
  article-title: How does DBS work?
  publication-title: Suppl. Clin. Neurophysiol.
– volume: 24
  start-page: 7410
  year: 2004
  end-page: 7419
  ident: bib6
  article-title: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation
  publication-title: J. Neurosci.
– volume: 205
  start-page: 251
  year: 2010
  end-page: 261
  ident: bib41
  article-title: High-frequency microstimulation in human globus pallidus and substantia nigra
  publication-title: Exp. Brain Res.
– volume: 112
  start-page: 47
  year: 2010
  end-page: 53
  ident: bib46
  article-title: Reprogramming guided by the fused images of MRI and CT in subthalamic nucleus stimulation in Parkinson disease
  publication-title: Clin. Neurol. Neurosurg.
– volume: 215
  start-page: 380
  year: 2009
  end-page: 387
  ident: bib40
  article-title: Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity
  publication-title: Exp. Neurol.
– start-page: 21
  year: 2006
  end-page: 25
  ident: bib79
  article-title: Basal ganglia discharge abnormalities in Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– volume: 231
  start-page: 309
  year: 2011
  end-page: 313
  ident: bib4
  article-title: Pallidal stimulation: Effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease
  publication-title: Exp. Neurol.
– volume: 301
  start-page: 63
  year: 2009
  end-page: 73
  ident: bib77
  article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial
  publication-title: JAMA
– volume: 28
  start-page: 3008
  year: 2008
  end-page: 3016
  ident: bib42
  article-title: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease
  publication-title: J. Neurosci.
– volume: 9
  start-page: 357
  year: 1986
  end-page: 381
  ident: bib3
  article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex
  publication-title: Annu. Rev. Neurosci.
– volume: 101
  start-page: 1941
  year: 2009
  end-page: 1960
  ident: bib51
  article-title: Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations
  publication-title: J. Neurophysiol.
– volume: 2009
  start-page: 5494
  year: 2009
  end-page: 5497
  ident: bib67
  article-title: An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 84
  start-page: 289
  year: 2000
  end-page: 300
  ident: bib59
  article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey
  publication-title: J. Neurophysiol.
– volume: 18
  start-page: 357
  year: 2003
  end-page: 363
  ident: bib13
  article-title: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease
  publication-title: Mov. Disord.
– volume: 7
  start-page: 16009
  year: 2010
  ident: bib69
  article-title: The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor
  publication-title: J. Neural Eng.
– volume: 84
  start-page: 570
  year: 2000
  end-page: 574
  ident: bib22
  article-title: Microstimulation-induced inhibition of neuronal firing in human globus pallidus
  publication-title: J. Neurophysiol.
– volume: 13
  start-page: 266
  year: 1990
  end-page: 271
  ident: bib2
  article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing
  publication-title: Trends Neurosci.
– volume: 30
  start-page: 357
  year: 2007
  end-page: 364
  ident: bib32
  article-title: Pathological synchronization in Parkinson's disease: networks, models and treatments
  publication-title: Trends Neurosci.
– volume: 362
  start-page: 2077
  year: 2010
  end-page: 2091
  ident: bib26
  article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease
  publication-title: N. Engl. J. Med.
– volume: 26
  start-page: 1701
  year: 2007
  end-page: 1713
  ident: bib45
  article-title: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism
  publication-title: Eur. J. Neurosci.
– volume: 41
  start-page: 2
  year: 2011
  end-page: 10
  ident: bib17
  article-title: Bursts and oscillations as independent properties of neural activity in the parkinsonian globus pallidus internus
  publication-title: Neurobiol. Dis.
– volume: 318
  start-page: 1309
  year: 2007
  end-page: 1312
  ident: bib27
  article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism
  publication-title: Science
– volume: 11
  start-page: 305
  year: 2000
  end-page: 320
  ident: bib5
  article-title: Reinforcement-driven dimensionality reduction—a model for information processing in the basal ganglia
  publication-title: J. Basic Clin. Physiol. Pharmacol.
– volume: 72
  start-page: 507
  year: 1994
  end-page: 520
  ident: bib10
  article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism
  publication-title: J. Neurophysiol.
– volume: 75
  start-page: S59
  year: 2008
  end-page: S65
  ident: bib75
  article-title: Deep brain stimulation: how does it work?
  publication-title: Cleve. Clin. J. Med.
– volume: 4
  start-page: S31
  year: 2002
  end-page: S45
  ident: bib16
  article-title: Relationship between oscillations in the basal ganglia and synchronization of cortical activity
  publication-title: Epileptic Disord.
– volume: 249
  start-page: 1436
  year: 1990
  end-page: 1438
  ident: bib9
  article-title: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus
  publication-title: Science
– volume: 13
  start-page: S434
  year: 2007
  end-page: S436
  ident: bib23
  article-title: Oscillatory activity in the basal ganglia
  publication-title: Parkinsonism Relat. Disord.
– volume: 89
  start-page: 79
  year: 2009
  end-page: 123
  ident: bib31
  article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior
  publication-title: Prog. Neurobiol.
– volume: 94
  start-page: 164102
  year: 2005
  ident: bib62
  article-title: Effective desynchronization by nonlinear delayed feedback
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: S69
  year: 2002
  end-page: S72
  ident: bib74
  article-title: Mechanisms of deep brain stimulation: excitation or inhibition
  publication-title: Mov. Disord.
– volume: 63
  start-page: 1266
  year: 2006
  end-page: 1272
  ident: bib57
  article-title: Subthalamic nucleus stimulation: improvements in outcome with reprogramming
  publication-title: Arch. Neurol.
– volume: 52
  start-page: 155
  year: 2006
  end-page: 168
  ident: bib71
  article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology
  publication-title: Neuron
– volume: 23
  start-page: 114
  year: 2010
  end-page: 124
  ident: bib7
  article-title: Delayed feedback control of bursting synchronization in a scale-free neuronal network
  publication-title: Neural Netw.
– volume: 25
  start-page: 578
  year: 2010
  end-page: 586
  ident: bib58
  article-title: Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease
  publication-title: Mov. Disord.
– volume: 22
  start-page: 7850
  year: 2002
  end-page: 7855
  ident: bib33
  article-title: Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism
  publication-title: J. Neurosci.
– volume: 133
  start-page: 746
  year: 2010
  end-page: 761
  ident: bib28
  article-title: Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming
  publication-title: Brain
– volume: 221
  start-page: 260
  year: 2010
  end-page: 266
  ident: bib18
  article-title: Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease
  publication-title: Exp. Neurol.
– year: 2004
  ident: bib44
  article-title: Linear Systems and Signals
– volume: 219
  start-page: 359
  year: 2009
  end-page: 362
  ident: bib39
  article-title: Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey
  publication-title: Exp. Neurol.
– volume: 32
  start-page: 1080
  year: 2010
  end-page: 1091
  ident: bib19
  article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition
  publication-title: Eur. J. Neurosci.
– volume: 8
  start-page: 036018
  year: 2011
  ident: bib66
  article-title: A chronic generalized bi-directional brain-machine interface
  publication-title: J. Neural Eng.
– volume: 24
  start-page: 9240
  year: 2004
  end-page: 9243
  ident: bib37
  article-title: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings
  publication-title: J. Neurosci.
– volume: 12
  start-page: 366
  year: 1989
  end-page: 375
  ident: bib1
  article-title: The functional anatomy of basal ganglia disorders
  publication-title: Trends Neurosci.
– volume: 2009
  start-page: 4228
  year: 2009
  end-page: 4229
  ident: bib53
  article-title: Customizing deep brain stimulation to the patient using computational models
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 89
  start-page: 81
  year: 2003
  end-page: 88
  ident: bib68
  article-title: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations
  publication-title: Biol. Cybern.
– volume: 22
  start-page: 4639
  year: 2002
  end-page: 4653
  ident: bib29
  article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease
  publication-title: J. Neurosci.
– volume: 28
  start-page: 4795
  year: 2008
  end-page: 4806
  ident: bib50
  article-title: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex
  publication-title: J. Neurosci.
– volume: 219
  start-page: 58
  year: 2009
  end-page: 61
  ident: bib78
  article-title: Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia?
  publication-title: Exp. Neurol.
– start-page: 17
  year: 2006
  end-page: 20
  ident: bib34
  article-title: Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– volume: 22
  start-page: 2855
  year: 2002
  end-page: 2861
  ident: bib47
  article-title: Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity
  publication-title: J. Neurosci.
– volume: 26
  start-page: 51
  year: 2011
  end-page: 58
  ident: bib73
  article-title: Clinical subtypes of Parkinson's disease
  publication-title: Mov. Disord.
– volume: 104
  start-page: 911
  year: 2010
  end-page: 921
  ident: bib21
  article-title: Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity
  publication-title: J. Neurophysiol.
– volume: 217
  start-page: 1
  year: 2009
  end-page: 3
  ident: bib24
  article-title: Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander?
  publication-title: Exp. Neurol.
– volume: 4
  start-page: L14
  year: 2007
  end-page: L21
  ident: bib25
  article-title: Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model
  publication-title: J. Neural Eng.
– volume: 186
  start-page: 116
  year: 2010
  end-page: 129
  ident: bib56
  article-title: Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals
  publication-title: J. Neurosci. Methods
– volume: 126
  start-page: 199
  year: 2003
  end-page: 212
  ident: bib70
  article-title: The cerebral oscillatory network of parkinsonian resting tremor
  publication-title: Brain
– volume: 175
  start-page: 379
  year: 2009
  end-page: 391
  ident: bib8
  article-title: Functional neurosurgery for movement disorders: a historical perspective
  publication-title: Prog. Brain Res.
– start-page: 27
  year: 2006
  end-page: 30
  ident: bib14
  article-title: Bad oscillations in Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– volume: 92
  start-page: 2122
  year: 2004
  end-page: 2136
  ident: bib49
  article-title: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat
  publication-title: J. Neurophysiol.
– volume: 24
  start-page: 6003
  year: 2004
  end-page: 6010
  ident: bib30
  article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials
  publication-title: J. Neurosci.
– volume: 31
  start-page: 8699
  year: 2011
  end-page: 8705
  ident: bib35
  article-title: Quality metrics to accompany spike sorting of extracellular signals
  publication-title: J. Neurosci.
– volume: 215
  start-page: 17
  year: 1996
  end-page: 20
  ident: bib11
  article-title: High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey
  publication-title: Neurosci. Lett.
– volume: 9
  start-page: 357
  year: 1986
  ident: 10.1016/j.neuron.2011.08.023_bib3
  article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.09.030186.002041
– volume: 31
  start-page: 8699
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib35
  article-title: Quality metrics to accompany spike sorting of extracellular signals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0971-11.2011
– volume: 93
  start-page: 1569
  year: 2005
  ident: 10.1016/j.neuron.2011.08.023_bib36
  article-title: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00829.2004
– volume: 231
  start-page: 309
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib4
  article-title: Pallidal stimulation: Effect of pattern and rate on bradykinesia in the non-human primate model of Parkinson's disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2011.06.012
– volume: 221
  start-page: 260
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib18
  article-title: Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.11.012
– volume: 41
  start-page: 2
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib17
  article-title: Bursts and oscillations as independent properties of neural activity in the parkinsonian globus pallidus internus
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2010.08.012
– volume: 32
  start-page: 1080
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib19
  article-title: Deep brain stimulation mechanisms: beyond the concept of local functional inhibition
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2010.07413.x
– volume: 22
  start-page: 7850
  year: 2002
  ident: 10.1016/j.neuron.2011.08.023_bib33
  article-title: Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-18-07850.2002
– volume: 20
  start-page: 8559
  year: 2000
  ident: 10.1016/j.neuron.2011.08.023_bib64
  article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-22-08559.2000
– volume: 249
  start-page: 1436
  year: 1990
  ident: 10.1016/j.neuron.2011.08.023_bib9
  article-title: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus
  publication-title: Science
  doi: 10.1126/science.2402638
– volume: 4
  start-page: S31
  issue: Suppl 3
  year: 2002
  ident: 10.1016/j.neuron.2011.08.023_bib16
  article-title: Relationship between oscillations in the basal ganglia and synchronization of cortical activity
  publication-title: Epileptic Disord.
– volume: 2009
  start-page: 5494
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib67
  article-title: An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 126
  start-page: 199
  year: 2003
  ident: 10.1016/j.neuron.2011.08.023_bib70
  article-title: The cerebral oscillatory network of parkinsonian resting tremor
  publication-title: Brain
  doi: 10.1093/brain/awg022
– volume: 318
  start-page: 1309
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib27
  article-title: Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism
  publication-title: Science
  doi: 10.1126/science.1146157
– volume: 219
  start-page: 359
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib39
  article-title: Pallidal stimulation that improves parkinsonian motor symptoms also modulates neuronal firing patterns in primary motor cortex in the MPTP-treated monkey
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.04.022
– volume: 23
  start-page: 114
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib7
  article-title: Delayed feedback control of bursting synchronization in a scale-free neuronal network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.08.005
– volume: 103
  start-page: 962
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib15
  article-title: Deep brain stimulation does not silence neurons in subthalamic nucleus in Parkinson's patients
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00363.2009
– volume: 28
  start-page: 3008
  year: 2008
  ident: 10.1016/j.neuron.2011.08.023_bib42
  article-title: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5295-07.2008
– volume: 25
  start-page: 578
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib58
  article-title: Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22735
– volume: 68
  start-page: 165
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib12
  article-title: Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2010.260
– volume: 219
  start-page: 58
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib78
  article-title: Pathological subthalamic nucleus oscillations in PD: can they be the cause of bradykinesia and akinesia?
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.05.014
– volume: 50
  start-page: 381
  year: 1996
  ident: 10.1016/j.neuron.2011.08.023_bib55
  article-title: The basal ganglia: focused selection and inhibition of competing motor programs
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(96)00042-1
– start-page: 27
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib14
  article-title: Bad oscillations in Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– start-page: 636
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib60
  article-title: Design via state space
– volume: 301
  start-page: 63
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib77
  article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial
  publication-title: JAMA
  doi: 10.1001/jama.2008.929
– start-page: 21
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib79
  article-title: Basal ganglia discharge abnormalities in Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– volume: 89
  start-page: 79
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib31
  article-title: Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2009.06.003
– volume: 11
  start-page: 100
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib72
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2774
– volume: 2009
  start-page: 4228
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib53
  article-title: Customizing deep brain stimulation to the patient using computational models
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 11
  start-page: 305
  year: 2000
  ident: 10.1016/j.neuron.2011.08.023_bib5
  article-title: Reinforcement-driven dimensionality reduction—a model for information processing in the basal ganglia
  publication-title: J. Basic Clin. Physiol. Pharmacol.
  doi: 10.1515/JBCPP.2000.11.4.305
– volume: 24
  start-page: 6003
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib30
  article-title: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4848-03.2004
– volume: 104
  start-page: 911
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib21
  article-title: Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00103.2010
– volume: 22
  start-page: 387
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib80
  article-title: Akineto-rigid vs. tremor syndromes in Parkinsonism
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e32832d9d67
– volume: 101
  start-page: 1941
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib51
  article-title: Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.91092.2008
– volume: 13
  start-page: 266
  year: 1990
  ident: 10.1016/j.neuron.2011.08.023_bib2
  article-title: Functional architecture of basal ganglia circuits: neural substrates of parallel processing
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(90)90107-L
– volume: 63
  start-page: 1266
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib57
  article-title: Subthalamic nucleus stimulation: improvements in outcome with reprogramming
  publication-title: Arch. Neurol.
– volume: 89
  start-page: 81
  year: 2003
  ident: 10.1016/j.neuron.2011.08.023_bib68
  article-title: A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-003-0425-7
– volume: 22
  start-page: 4639
  year: 2002
  ident: 10.1016/j.neuron.2011.08.023_bib29
  article-title: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-11-04639.2002
– volume: 22
  start-page: 2855
  year: 2002
  ident: 10.1016/j.neuron.2011.08.023_bib47
  article-title: Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.22-07-02855.2002
– volume: 186
  start-page: 116
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib56
  article-title: Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.10.024
– volume: 84
  start-page: 570
  year: 2000
  ident: 10.1016/j.neuron.2011.08.023_bib22
  article-title: Microstimulation-induced inhibition of neuronal firing in human globus pallidus
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.1.570
– volume: 52
  start-page: 155
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib71
  article-title: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.09.020
– volume: 84
  start-page: 289
  year: 2000
  ident: 10.1016/j.neuron.2011.08.023_bib59
  article-title: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.1.289
– year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib44
– volume: 28
  start-page: 4795
  year: 2008
  ident: 10.1016/j.neuron.2011.08.023_bib50
  article-title: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0123-08.2008
– volume: 8
  start-page: 036018
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib66
  article-title: A chronic generalized bi-directional brain-machine interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036018
– volume: 21
  start-page: S284
  issue: Suppl 14
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib76
  article-title: Basic algorithms for the programming of deep brain stimulation in Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20961
– volume: 115
  start-page: 1239
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib52
  article-title: Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.12.024
– volume: 17
  start-page: S69
  issue: Suppl 3
  year: 2002
  ident: 10.1016/j.neuron.2011.08.023_bib74
  article-title: Mechanisms of deep brain stimulation: excitation or inhibition
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10144
– volume: 175
  start-page: 379
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib8
  article-title: Functional neurosurgery for movement disorders: a historical perspective
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(09)17525-8
– volume: 215
  start-page: 380
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib40
  article-title: Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2008.11.008
– volume: 5
  start-page: 22
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib61
  article-title: Dopaminergic balance between reward maximization and policy complexity
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2011.00022
– volume: 215
  start-page: 17
  year: 1996
  ident: 10.1016/j.neuron.2011.08.023_bib11
  article-title: High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(96)12943-8
– volume: 24
  start-page: 7410
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib6
  article-title: Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1691-04.2004
– volume: 26
  start-page: 1701
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib45
  article-title: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05777.x
– volume: 26
  start-page: 51
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib73
  article-title: Clinical subtypes of Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.23346
– start-page: 17
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib34
  article-title: Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease
  publication-title: J. Neural Transm. Suppl.
– volume: 133
  start-page: 746
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib28
  article-title: Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming
  publication-title: Brain
  doi: 10.1093/brain/awp315
– volume: 4
  start-page: L14
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib25
  article-title: Toward closed-loop optimization of deep brain stimulation for Parkinson's disease: concepts and lessons from a computational model
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/L03
– volume: 12
  start-page: 366
  year: 1989
  ident: 10.1016/j.neuron.2011.08.023_bib1
  article-title: The functional anatomy of basal ganglia disorders
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(89)90074-X
– volume: 30
  start-page: 357
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib32
  article-title: Pathological synchronization in Parkinson's disease: networks, models and treatments
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.05.004
– volume: 7
  start-page: 16009
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib69
  article-title: The causal relationship between subcortical local field potential oscillations and Parkinsonian resting tremor
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/1/016009
– volume: 24
  start-page: 9240
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib37
  article-title: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3366-04.2004
– volume: 94
  start-page: 164102
  year: 2005
  ident: 10.1016/j.neuron.2011.08.023_bib62
  article-title: Effective desynchronization by nonlinear delayed feedback
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.164102
– volume: 11
  start-page: 166
  year: 1985
  ident: 10.1016/j.neuron.2011.08.023_bib65
  article-title: MPTP produces classic parkinsonian syndrome in African green monkeys
  publication-title: Soc. Neurosci. Abstr.
– volume: 75
  start-page: S59
  issue: Suppl 2
  year: 2008
  ident: 10.1016/j.neuron.2011.08.023_bib75
  article-title: Deep brain stimulation: how does it work?
  publication-title: Cleve. Clin. J. Med.
  doi: 10.3949/ccjm.75.Suppl_2.S59
– volume: 92
  start-page: 2122
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib49
  article-title: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00333.2004
– volume: 13
  start-page: S434
  issue: Suppl 3
  year: 2007
  ident: 10.1016/j.neuron.2011.08.023_bib23
  article-title: Oscillatory activity in the basal ganglia
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/S1353-8020(08)70044-0
– volume: 54
  start-page: S238
  issue: Suppl 1
  year: 2011
  ident: 10.1016/j.neuron.2011.08.023_bib54
  article-title: Patient-specific analysis of the relationship between the volume of tissue activated during DBS and verbal fluency
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.068
– volume: 57
  start-page: 733
  year: 2004
  ident: 10.1016/j.neuron.2011.08.023_bib48
  article-title: How does DBS work?
  publication-title: Suppl. Clin. Neurophysiol.
  doi: 10.1016/S1567-424X(09)70414-3
– volume: 72
  start-page: 507
  year: 1994
  ident: 10.1016/j.neuron.2011.08.023_bib10
  article-title: The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.72.2.507
– volume: 76
  start-page: 2083
  year: 1996
  ident: 10.1016/j.neuron.2011.08.023_bib63
  article-title: Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.3.2083
– volume: 34
  start-page: 268
  issue: Suppl. 1
  year: 1984
  ident: 10.1016/j.neuron.2011.08.023_bib43
  article-title: A comparison of the acute and chronic effects of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-induced parkinsonism in humans and the squirrel monkey
  publication-title: Neurology
– volume: 217
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuron.2011.08.023_bib24
  article-title: Synchronisation in the beta frequency-band—the bad boy of parkinsonism or an innocent bystander?
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.02.003
– volume: 112
  start-page: 47
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib46
  article-title: Reprogramming guided by the fused images of MRI and CT in subthalamic nucleus stimulation in Parkinson disease
  publication-title: Clin. Neurol. Neurosurg.
  doi: 10.1016/j.clineuro.2009.10.008
– volume: 18
  start-page: 357
  year: 2003
  ident: 10.1016/j.neuron.2011.08.023_bib13
  article-title: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10358
– volume: 100
  start-page: 2549
  year: 2008
  ident: 10.1016/j.neuron.2011.08.023_bib38
  article-title: Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90372.2008
– volume: 205
  start-page: 251
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib41
  article-title: High-frequency microstimulation in human globus pallidus and substantia nigra
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2362-8
– volume: 21
  start-page: S219
  issue: Suppl 14
  year: 2006
  ident: 10.1016/j.neuron.2011.08.023_bib20
  article-title: Deep brain stimulation: postoperative issues
  publication-title: Mov. Disord.
  doi: 10.1002/mds.20957
– volume: 362
  start-page: 2077
  year: 2010
  ident: 10.1016/j.neuron.2011.08.023_bib26
  article-title: Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0907083
– reference: 22017983 - Neuron. 2011 Oct 20;72(2):197-8
– reference: 22423380 - Mov Disord. 2012 Feb;27(2):200
SSID ssj0014591
Score 2.5764587
Snippet Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 370
SubjectTerms Animals
Basal Ganglia - physiopathology
Cercopithecus aethiops
Deep Brain Stimulation - methods
Electrodes
Globus Pallidus - physiopathology
Monkeys & apes
MPTP Poisoning - chemically induced
MPTP Poisoning - physiopathology
MPTP Poisoning - therapy
Neurons - physiology
Neurosciences
Parkinson Disease, Secondary - chemically induced
Parkinson Disease, Secondary - physiopathology
Parkinson Disease, Secondary - therapy
Parkinson's disease
Primates
Treatment Outcome
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSgg4INryWNoiHxA3s0lsJ_Fxu21Vnpel0t4s2_GiVNkkanaF9t93Ji9ACIq4xmMpHtszn-2Zbwh5I1ehcFykDLBowoQNDLPSJ0wJGYQGTj4mw3vIz1_iq2vxYSmXe2Q-5MJgWGVv-zub3lrr_su01-a0zvPpIkgVspdzJD1LADWDHeYiaZP4lmfjS4KQXdU8EGYoPaTPtTFeLWdk-YPIM-J_ck-_w8_H5OG2rM3uuymKn1zS5VPypMeSdNb97gHZ8-UhOZqVcI5e7-hb2kZ3ttfmh-RBV3Ryd0Q-zouq8Rn7VFU1Pfe-pmdYJoIuNvm6r-VF3zd0sUUO5OqWQtNs7Yu8XSvlN4p50m3KWN6sn5Hry4uv8yvWl1RgDnDdhnmh0EN7MIFChjaLLJxgAGAba1woU4MMb1IplwbOxTZLuIS5siEXUWYToRx_TvbLqvQvCU1jgYFqq8yZWICXt9zJLFglKpJcehNPCB80qV3PN45lLwo9BJbd6E7_GvWvsRpmxCeEjb3qjm_jHvlkmCT9y7rR4BLu6XkyzKnu922jkbAOU30FNNOxGXYcPqOY0lfbRiuEdTEg07-JCKHgsCcn5EW3WsbBRBHaQCUm5N24fP5ppK_-e6TH5FHURy5GwQnZ39xu_SlAqY193e6VO22MGf0
  priority: 102
  providerName: Elsevier
Title Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism
URI https://dx.doi.org/10.1016/j.neuron.2011.08.023
https://www.ncbi.nlm.nih.gov/pubmed/22017994
https://www.proquest.com/docview/1549956143
https://www.proquest.com/docview/900636951
https://www.proquest.com/docview/904492175
http://www.cell.com/article/S0896627311007768/pdf
UnpaywallVersion publishedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: KQ8
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241002
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trRDwwMc2oDAqPyDe0uXDTuLHbDBtFCa0UlGeIttxUSFNoiURKn89vnwUpAk2nn1-sO_s-5199zuAV2zpUOXR0DJYNLCotIUlmQ4sTpntCBP5iATfIT9c-Gdz-m7BFjvQNy7ErEp8sW7u6G7vjmZ2yJGn3EN6s8Dg46MiWe7C0Mc_pQEM5xcfoy8NWuS-hXLNDycP8IeT9-VyTU5XwxGZ_SbudL2_uaPrcPM-3K2zQmx-iDT9wwWdPoTLvpCnzTz5PqkrOVE_r_M63n51j-BBB0hJ1Mo9hh2d7cF-lJlgfL0hr0mTItq8ve_BnbZz5WYfpidpXurEep_nBXmjdUGOsdcEmVWrddcQjJyXZFYjkXJ-RcxQtNbpqjG47CvBYuum7mxVrg9gfvr208mZ1fVlsJQBh5WlKUc3r809SpkjE1eaMMigdCGFclgokCaOca5CWylfJoHHjMKl41E3kQHlynsCgyzP9DMgoU8x222ZKOFTAxWkp1hiLwPuMo9p4Y_A69UTq460HHtnpHGfnfYtbpUao1JjbKnpeiOwtrOKlrTjBvmg13zcAY8WUMTGr9ww87A3lLg7_GWMrHdYL0zNMNkOm2OLuheZzusy5ogNfQNv_yVCKTcRIxvB09YEt4txXbxIOR3BZGuTt1rp8_-d8ALuuV3Wo2sfwqC6qvVLA8MqOYZhNL38PB3D7vnieNwdw18I2i5p
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NITR4QLABKwzwA-LNNI3tJH7sClPLur10k_pmOY47BaVJtLSa-t_jyy9ACIZ4jW0pts9339l33wF8EKsRN4xH1GHRkPLY0zQWNqSSC2-kneejE7yHvLgMptf861Is92DS5cJgWGWr-xudXmvr9suwXc1hmabDhRdJZC9nSHoWOtT8AB46NOBhXNdsedo_JXDRlM1zvSl27_Ln6iCvmjQy_8Hk6bM_2aff8ecTONjmpd7d6Sz7ySadPYOnLZgk4-Z_n8OezQ_haJw7R3q9Ix9JHd5Z35sfwqOm6uTuCM4nWVHZhM6LoiSfrS3JKdaJIItNum6LeZFZRRZbJEEubolrGq9tltbCkt8QTJSuc8bSav0Crs--XE2mtK2pQI0DdhtquUQTbZ0O5GIUJ37sXBiHsHWszUhEGinehJQm8owJ4iRkwm1WPGLcT-KQS8Newn5e5PYYSBRwjFRbJUYH3Jn5mBmReKtQ-oIJq4MBsG4llWkJx7HuRaa6yLJvqll_heuvsBymzwZA-1FlQ7hxT_-w2yT1i-AoZxPuGXnS7alqD26lkLEOc325ayZ9szty-I6ic1tsKyUR1wUOmv6tC-fSeXtiAK8aaekn4_uoBCUfwKdefP5ppq__e6bv4WB6dTFX89nl-Rt47LdhjL53Avub261963DVJn5Xn5vvnHYdHg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4NHyWCjIB8TN2yS2k_i4FKryqhDLSuVk2Y4XLWSTqJsILb8eTx4LUgUtZ48P9ow939gz3wA8F4uQW8ZT6rFoQrkJNDXCJVRyEYTaRz46w3fID6fxyZy_PRNnOzA0LsSsSnyxbu_ofu8OZ0EqkaecIb1Z4vHxYZUtrsFujH9KI9idn36cfmnRoowpyrU_nDLBH045lMu1OV0tR2Txm7gzYn9zRxfh5i240RSV3vzQef6HCzq-A5-GQp4u8-T7pKnNxP68yOt49dXdhds9ICXTTu4e7LhiD_anhQ_GVxvygrQpou3b-x5c7zpXbvbh3VFerl1G35dlRV45V5GX2GuCzOrlqm8IRt6syaxBIuXynPih6crly9bgiq8Ei63burPlenUf5sevPx-d0L4vA7UeHNbUcYlu3vl7lIvQZJHxYZBH6dpoG4pUI02ckNKmgbWxyRImvMJNyHiUmYRLyx7AqCgL9whIGnPMdltkVsfcQwXDrMiCRSIjwYTT8RjYoB5le9Jy7J2RqyE77ZvqlKpQqQpbakZsDHQ7q-pIOy6RTwbNqx54dIBCeb9yycyDwVBUf_jXClnvsF6Y-2GyHfbHFnWvC1c2ayURG8Ye3v5LhHPpI0YxhoedCW4XE0V4kUo-hsnWJq-00sf_O-EJ3Iz6rMcoOIBRfd64px6G1eZZf_B-AZSsK8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Closed-Loop+Deep+Brain+Stimulation+Is+Superior+in+Ameliorating+Parkinsonism&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Rosin%2C+Boris&rft.au=Slovik%2C+Maya&rft.au=Mitelman%2C+Rea&rft.au=Rivlin-Etzion%2C+Michal&rft.date=2011-10-20&rft.issn=0896-6273&rft.volume=72&rft.issue=2&rft.spage=370&rft.epage=384&rft_id=info:doi/10.1016%2Fj.neuron.2011.08.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon