Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strateg...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 72; no. 2; pp. 370 - 384 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.10.2011
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 1097-4199 |
DOI | 10.1016/j.neuron.2011.08.023 |
Cover
Summary: | Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.
► Novel DBS based on neuronal activity (closed-loop, CL-DBS) is superior to standard DBS ► Corticopallidal CL-DBS yields greater alleviation of parkinsonian akinesia ► Corticopallidal CL-DBS yields greater reduction of oscillatory neuronal discharge ► Pallidopallidal CL-DBS leads to dissociation between discharge rate and patterns |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0896-6273 1097-4199 1097-4199 |
DOI: | 10.1016/j.neuron.2011.08.023 |