GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run

A billion years ago, two black holes spiraled together, forming a new black hole. They produced gravitational waves that reached Earth on September 14, 2015, where they were measured during the first observing run of the Advanced LIGO detectors. This signal marked the birth of gravitational-wave ast...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. X Vol. 13; no. 4; p. 041039
Main Authors Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., Adhikari, N., Adhikari, R. X., Adya, V. B., Affeldt, C., Agarwal, D., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O. D., Aiello, L., Ain, A., Ajith, P., Akcay, S., Akutsu, T., Albanesi, S., Allocca, A., Altin, P. A., Amato, A., Anand, C., Anand, S., Ananyeva, A., Anderson, S. B., Anderson, W. G., Ando, M., Andrade, T., Andres, N., Andrić, T., Angelova, S. V., Ansoldi, S., Antelis, J. M., Antier, S., Appert, S., Arai, Koji, Arai, Koya, Arai, Y., Araki, S., Araya, A., Araya, M. C., Areeda, J. S., Arène, M., Aritomi, N., Arnaud, N., Arogeti, M., Aronson, S. M., Arun, K. G., Asada, H., Asali, Y., Ashton, G., Aso, Y., Assiduo, M., Aston, S. M., Astone, P., Aubin, F., Austin, C., Babak, S., Badaracco, F., Bader, M. K. M., Badger, C., Bae, S., Bae, Y., Baer, A. M., Bagnasco, S., Bai, Y., Baiotti, L., Baird, J., Bajpai, R., Ball, M., Ballardin, G., Ballmer, S. W., Balsamo, A., Baltus, G., Banagiri, S., Bankar, D., Barayoga, J. C., Barbieri, C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Barton, M. A., Bartos, I., Bassiri, R., Basti, A., Bawaj, M., Bayley, J. C., Baylor, A. C., Bazzan, M., Bécsy, B., Bedakihale, V. M., Bejger, M.
Format Journal Article
LanguageEnglish
Published United States American Physical Society 04.12.2023
Subjects
Online AccessGet full text
ISSN2160-3308
2160-3308
DOI10.1103/PhysRevX.13.041039

Cover

More Information
Summary:A billion years ago, two black holes spiraled together, forming a new black hole. They produced gravitational waves that reached Earth on September 14, 2015, where they were measured during the first observing run of the Advanced LIGO detectors. This signal marked the birth of gravitational-wave astronomy, which provides a unique way to study black holes and neutron stars. The Advanced LIGO and Advanced Virgo detectors have now completed their third observing run, the latest in a series of runs, each more sensitive (and with higher detection rates) than the last. Here, we present the third Gravitational-Wave Transient Catalog (GWTC-3), which describes discoveries made up to the end of the third run.GWTC-3 contains 90 gravitational-wave candidates—35 more than the previous catalog—with better-than-even odds of being real signals. The catalog is an unprecedented census of merging black holes and neutron stars. We now have observations of binary neutron stars, binary black holes, and neutron star–black hole binaries. These cover a diverse range of masses, from neutron stars as light as 1.2 solar masses to remnant black holes exceeding 100 solar masses, and include ambiguous objects that straddle the expected divide between neutron stars and black holes.This paper details the latest results from the third observing run, from detector status and data-quality checks, to searches for signals and source-property inferences. GWTC-3 observations and associated data enable studies of compact astrophysical objects, the nature of gravity, and the history of the Universe. However, many puzzles and open questions remain to be addressed by future observing runs, which promise to yield hundreds more binary detections and possibly entirely new types of gravitational-wave sources.
Bibliography:scopus-id:2-s2.0-85182926803
USDOE
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.13.041039