Epigenetics and Preeclampsia: Defining Functional Epimutations in the Preeclamptic Placenta Related to the TGF-β Pathway

Preeclampsia is a potentially fatal pregnancy disorder affecting millions of women around the globe. Dysregulation in gene and protein expression within key biological pathways controlling angiogenesis has been implicated in the development of preeclampsia. Altered CpG methylation, a type of epimuta...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 10; p. e0141294
Main Authors Martin, Elizabeth, Ray, Paul D., Smeester, Lisa, Grace, Matthew R., Boggess, Kim, Fry, Rebecca C.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.10.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0141294

Cover

More Information
Summary:Preeclampsia is a potentially fatal pregnancy disorder affecting millions of women around the globe. Dysregulation in gene and protein expression within key biological pathways controlling angiogenesis has been implicated in the development of preeclampsia. Altered CpG methylation, a type of epimutation, may underlie this pathway dysregulation. In the present study, placental tissue from preeclamptic cases and normotensive controls was analyzed for genome-wide differential CpG methylation and concomitant changes in gene expression. A set of 123 genes, representing 19.9% of all genes with altered CpG methylation, was associated with functional changes in transcript levels. Underscoring the complex relationships between CpG methylation and gene expression, here hypermethylation was never associated with gene silencing, nor was hypomethylation always associated with gene activation. Moreover, the genomic region of the CpG mark was important in predicting the relationship between CpG methylation and gene expression. The 123 genes were enriched for their involvement in the transforming growth factor beta (TGF-β) signaling pathway, a known regulator of placental trophoblast invasion and migration. This is the first study to identify CpG hypomethylation as an activator of TGF-β-associated gene expression in the preeclamptic placenta. The results suggest functional epimutations are associated with preeclampsia disease status and the identified genes may represent novel biomarkers of disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: RCF. Performed the experiments: LS. Analyzed the data: EM RCF. Contributed reagents/materials/analysis tools: RCF KB MRG. Wrote the paper: EM PDR LS KB MRG RCF.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0141294