Incompatible erythrocyte transfusion with lipopolysaccharide induces acute lung injury in a novel rat model
Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related acute lung injury. We previously developed an acute hemolytic transfusion reaction rat model mediated by transfusion of incompatible human erythrocytes aga...
Saved in:
Published in | PloS one Vol. 15; no. 4; p. e0230482 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
20.04.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-6203 1932-6203 |
DOI | 10.1371/journal.pone.0230482 |
Cover
Summary: | Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related acute lung injury. We previously developed an acute hemolytic transfusion reaction rat model mediated by transfusion of incompatible human erythrocytes against which rats have preexisting antibodies resulting in classical complement pathway mediated intravascular hemolysis. In this study, the acute hemolytic transfusion reaction model was adapted to yield an acute lung injury phenotype. Adolescent male Wistar rats were primed in the presence or absence of lipopolysaccharide followed by transfusion of incompatible erythrocytes. Blood was collected at various time points during the course of the experiment to determine complement C5a levels and free DNA in isolated plasma. At 4 hours, blood and lung tissue were recovered and assayed for complete blood count and histological acute lung injury, respectively. Compared to sham animals or animals receiving increasing amounts of incompatible erythrocytes (equivalent to a 15-45% transfusion) in the absence of lipopolysaccharide, lungs of animals receiving lipopolysaccharide and a 30% erythrocyte transfusion showed dramatic alveolar wall thickening due to neutrophil infiltration. C5a levels were significantly elevated in these animals indicating that complement activation contributes to lung damage. Additionally, these animals demonstrated a significant increase of free DNA in the blood over time suggestive of neutrophil extracellular trap formation previously associated with transfusion-related acute lung injury in humans and mice. This novel 'two-hit' model utilizing incompatible erythrocyte transfusion in the presence of lipopolysaccharide yields a robust acute lung injury phenotype. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: In addition to their academic appointments, Neel K Krishna and Kenji M Cunnion are officers of ReAlta Life Sciences, Inc. guiding the development of PIC1 molecules for clinical applications. ReAlta Life Sciences was founded by Eastern Virginia Medical School, Children’s Hospital of the King’s Daughters and Eriko Life Science Ventures. Oversight for potential conflict of interest is provided by Eastern Virginia Medical School Conflict of Interest Committee. Neel K Krishna and Kenji M Cunnion are listed as inventors on patents that describe PIC1 molecules. The authors would like to declare the following patents/patent applications associated with this research: 8,241,843 methods for regulating complement cascade proteins using astrovirus coat protein and derivatives thereof, 15/738,786 synthetic peptide compounds and methods of use,16/400,486 synthetic peptide compounds and methods of use, 8,906,845 peptide compounds to regulate the complement system, 9,422,337 peptide compounds to regulate the complement system, 10,005,818 derivative peptide compounds and methods of use, 9,914,753 peptide compounds to regulate the complement system, 10,414,799 peptide compounds to regulate the complement system, 16/534,200 peptide compounds to regulate the complement system, 16/242,550 pic1 inhibition of myeloperoxidase oxidative activity in an animal model. Additionally, Dr. Cunnion is a Board member for Eriko Life Science Ventures and ReAlta Life Sciences, Inc. This does not alter our adherence to PLOS ONE policies on sharing data and materials. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0230482 |