Incremental Linear Discriminant Analysis: A Fast Algorithm and Comparisons

It has always been a challenging task to develop a fast and an efficient incremental linear discriminant analysis (ILDA) algorithm. For this purpose, we conduct a new study for linear discriminant analysis (LDA) in this paper and develop a new ILDA algorithm. We propose a new batch LDA algorithm cal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 26; no. 11; pp. 2716 - 2735
Main Authors Delin Chu, Li-Zhi Liao, Ng, Michael Kwok-Po, Xiaoyan Wang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2015.2391201

Cover

More Information
Summary:It has always been a challenging task to develop a fast and an efficient incremental linear discriminant analysis (ILDA) algorithm. For this purpose, we conduct a new study for linear discriminant analysis (LDA) in this paper and develop a new ILDA algorithm. We propose a new batch LDA algorithm called LDA/QR. LDA/QR is a simple and fast LDA algorithm, which is obtained by computing the economic QR factorization of the data matrix followed by solving a lower triangular linear system. The relationship between LDA/QR and uncorrelated LDA (ULDA) is also revealed. Based on LDA/QR, we develop a new incremental LDA algorithm called ILDA/QR. The main features of our ILDA/QR include that: 1) it can easily handle the update from one new sample or a chunk of new samples; 2) it has efficient computational complexity and space complexity; and 3) it is very fast and always achieves competitive classification accuracy compared with ULDA algorithm and existing ILDA algorithms. Numerical experiments based on some real-world data sets demonstrate that our ILDA/QR is very efficient and competitive with the state-of-the-art ILDA algorithms in terms of classification accuracy, computational complexity, and space complexity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2015.2391201