Feedback Control by Online Learning an Inverse Model
A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the pla...
        Saved in:
      
    
          | Published in | IEEE transaction on neural networks and learning systems Vol. 23; no. 10; pp. 1637 - 1648 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          IEEE
    
        01.10.2012
     Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2162-237X 2162-2388 2162-2388  | 
| DOI | 10.1109/TNNLS.2012.2208655 | 
Cover
| Summary: | A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
| ISSN: | 2162-237X 2162-2388 2162-2388  | 
| DOI: | 10.1109/TNNLS.2012.2208655 |