Plant-protein-enabled biodegradable triboelectric nanogenerator for sustainable agriculture
•The “triboelectric series” of various plant proteins is first ranked•Plan protein as a by-product is first recycled as triboelectric material•This is the first mechanism exploration of plant protein in the field of TENG•A fully biodegradable TENG was designed to be used as a novel mulch film•The no...
Saved in:
Published in | Fundamental research (Beijing) Vol. 2; no. 6; pp. 974 - 984 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.11.2022
KeAi Publishing KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2667-3258 2096-9457 2667-3258 |
DOI | 10.1016/j.fmre.2021.09.010 |
Cover
Summary: | •The “triboelectric series” of various plant proteins is first ranked•Plan protein as a by-product is first recycled as triboelectric material•This is the first mechanism exploration of plant protein in the field of TENG•A fully biodegradable TENG was designed to be used as a novel mulch film•The novel mulch film can create a new path to enhance crop yield and quality
As the use of triboelectric nanogenerators (TENGs) increases, the generation of related electronic waste has been a major challenge. Therefore, the development of environmentally friendly, biodegradable, and low-cost TENGs must be prioritized. Having discovered that plant proteins, by-products of grain processing, possess excellent triboelectric properties, we explore these properties by evaluating the protein structure. The proteins are recycled to fabricate triboelectric layers, and the triboelectric series according to electrical properties is determined for the first time. Using a special structure design, we construct a plant-protein-enabled biodegradable TENG by integrating a polylactic acid film, which is used as a new type of mulch film to construct a growth-promoting system that generates space electric fields for agriculture. Thus, from the plant protein to the crop, a sustainable recycling loop is implemented. Using bean seedlings as a model to confirm the feasibility of the mulch film, we further use it in the cultivation of greenhouse vegetables. Experimental results demonstrate the applicability of the proposed plant-protein-enabled biodegradable TENG in sustainable agriculture.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2667-3258 2096-9457 2667-3258 |
DOI: | 10.1016/j.fmre.2021.09.010 |