spheresDT/Mpacts-PiCS: cell tracking and shape retrieval in membrane-labeled embryos

Abstract Motivation Uncovering the cellular and mechanical processes that drive embryo formation requires an accurate read out of cell geometries over time. However, automated extraction of 3D cell shapes from time-lapse microscopy remains challenging, especially when only membranes are labeled. Res...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 37; no. 24; pp. 4851 - 4856
Main Authors Thiels, Wim, Smeets, Bart, Cuvelier, Maxim, Caroti, Francesca, Jelier, Rob
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.12.2021
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btab557

Cover

More Information
Summary:Abstract Motivation Uncovering the cellular and mechanical processes that drive embryo formation requires an accurate read out of cell geometries over time. However, automated extraction of 3D cell shapes from time-lapse microscopy remains challenging, especially when only membranes are labeled. Results We present an image analysis framework for automated tracking and three-dimensional cell segmentation in confocal time lapses. A sphere clustering approach allows for local thresholding and application of logical rules to facilitate tracking and unseeded segmentation of variable cell shapes. Next, the segmentation is refined by a discrete element method simulation where cell shapes are constrained by a biomechanical cell shape model. We apply the framework on Caenorhabditis elegans embryos in various stages of early development and analyze the geometry of the 7- and 8-cell stage embryo, looking at volume, contact area and shape over time. Availability and implementation The Python code for the algorithm and for measuring performance, along with all data needed to recreate the results is freely available at 10.5281/zenodo.5108416 and 10.5281/zenodo.4540092. The most recent version of the software is maintained at https://bitbucket.org/pgmsembryogenesis/sdt-pics. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btab557