Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries

Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 3; p. 100919
Main Authors Zhou, Jian, Chen, Maoxin, Wang, Tao, Li, Shengyang, Zhang, Qiusheng, Zhang, Meng, Xu, Hanjiao, Liu, Jialing, Liang, Junfei, Zhu, Jian, Duan, Xiangfeng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2020.100919

Cover

Abstract Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. [Display omitted] •The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery•The CSe@HNCNFs effectively retard polyselenides diffusion during cycling•The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2•The CSe@HNCNFs displayed excellent cyclic stability and rate performance Energy Storage; Materials Characterization Techniques; Nanostructure
AbstractList Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. [Display omitted] •The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery•The CSe@HNCNFs effectively retard polyselenides diffusion during cycling•The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2•The CSe@HNCNFs displayed excellent cyclic stability and rate performance Energy Storage; Materials Characterization Techniques; Nanostructure
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. • The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery • The CSe@HNCNFs effectively retard polyselenides diffusion during cycling • The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2 • The CSe@HNCNFs displayed excellent cyclic stability and rate performance Energy Storage; Materials Characterization Techniques; Nanostructure
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L . However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm displays a specific capacity of 762 mAh g after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm , ultra-high areal capacities of 7.30 mAh cm is achieved, which greatly exceeds those reported previously for Li-Se batteries.
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. : Energy Storage; Materials Characterization Techniques; Nanostructure Subject Areas: Energy Storage, Materials Characterization Techniques, Nanostructure
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm-2 displays a specific capacity of 762 mAh g-1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm-2, ultra-high areal capacities of 7.30 mAh cm-2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm-2 displays a specific capacity of 762 mAh g-1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm-2, ultra-high areal capacities of 7.30 mAh cm-2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.
ArticleNumber 100919
Author Zhou, Jian
Li, Shengyang
Duan, Xiangfeng
Chen, Maoxin
Zhu, Jian
Wang, Tao
Zhang, Meng
Liu, Jialing
Xu, Hanjiao
Zhang, Qiusheng
Liang, Junfei
AuthorAffiliation 1 State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
2 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
3 School of Energy and Power Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
AuthorAffiliation_xml – name: 3 School of Energy and Power Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China
– name: 1 State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– name: 2 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 2
  givenname: Maoxin
  surname: Chen
  fullname: Chen, Maoxin
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 4
  givenname: Shengyang
  surname: Li
  fullname: Li, Shengyang
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 5
  givenname: Qiusheng
  surname: Zhang
  fullname: Zhang, Qiusheng
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 6
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 7
  givenname: Hanjiao
  surname: Xu
  fullname: Xu, Hanjiao
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 8
  givenname: Jialing
  surname: Liu
  fullname: Liu, Jialing
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 9
  givenname: Junfei
  surname: Liang
  fullname: Liang, Junfei
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
– sequence: 10
  givenname: Jian
  orcidid: 0000-0001-9852-1645
  surname: Zhu
  fullname: Zhu, Jian
  email: jzhu@hnu.edu.cn
  organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
– sequence: 11
  givenname: Xiangfeng
  surname: Duan
  fullname: Duan, Xiangfeng
  organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32114378$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1q3DAUhUVJadJpXqCLomU3nkryr6AUkiHtBIZ2kWYtruWrGRnbmsqagbx95XFSki6ykpDO-S6ce96Ts8ENSMhHzpac8eJLu7SjtkvBxPTAJJdvyIXIK5kwlomzZ_dzcjmOLWNRyUQmi3fkPBWcZ2lZXZB25Y7Q4RDoHcbDHnp609fYNNhQO9C1RQ9e76yGjq7A126gP2FwxtboR2qcp_dd8JCs7XZHrzyeZHvQNjzQjU3ukF5DCOgtjh_IWwPdiJeP54Lcf7_5vVonm18_bldXm0TngodE13mRlYLrnIPOULAq00aWPDcSDdNFmYlCoyzzRpRF0USNhFxCaqoKYw4iXZDbmds4aNXe2x78g3Jg1enB-a0CH6zuUHFpKg2M1ULLjLFcpiySy9oUIgedQmR9m1n7Q91jo2NQHroX0Jc_g92prTuqksWkI29BPj8CvPtzwDGoPu4Nuw4GdIdRibSQVcXTk_TT81n_hjwtKwqqWaC9G0ePRsWYIVg3jbad4kxN1VCtmqqhpmqouRrRKv6zPtFfNX2dTRi3dYxNUFGBg8bGetQhxmlfs_8FCDbRXA
CitedBy_id crossref_primary_10_1016_j_jechem_2022_09_026
crossref_primary_10_2139_ssrn_4094625
crossref_primary_10_1016_j_mtcomm_2020_101820
crossref_primary_10_1021_acsami_1c07535
crossref_primary_10_1002_adma_202406894
crossref_primary_10_1016_j_carbon_2022_01_053
crossref_primary_10_1039_D1TA10193E
crossref_primary_10_1039_D2NR03220A
crossref_primary_10_1016_j_jallcom_2022_167014
crossref_primary_10_1246_cl_210314
crossref_primary_10_1002_smll_202402466
crossref_primary_10_1007_s12598_021_01863_5
crossref_primary_10_1007_s12274_021_3773_5
crossref_primary_10_1002_aenm_202100448
crossref_primary_10_3389_fenrg_2022_1013929
crossref_primary_10_1007_s12598_023_02273_5
crossref_primary_10_1002_sus2_26
crossref_primary_10_1016_j_jallcom_2021_161328
crossref_primary_10_1016_j_cej_2021_133703
crossref_primary_10_1021_acsanm_4c02601
crossref_primary_10_3389_fenrg_2022_996471
crossref_primary_10_1002_smll_202005534
crossref_primary_10_1007_s12598_022_02103_0
crossref_primary_10_1007_s11431_021_2019_4
crossref_primary_10_1039_D2TA01398C
crossref_primary_10_3390_batteries9030143
crossref_primary_10_1039_D3GC04804G
crossref_primary_10_1007_s11581_022_04476_9
crossref_primary_10_1002_smll_202400812
crossref_primary_10_1002_adfm_202107246
crossref_primary_10_1016_j_jcis_2021_10_034
crossref_primary_10_1016_S1872_5805_22_60596_1
crossref_primary_10_1007_s12598_022_02022_0
crossref_primary_10_1021_acs_langmuir_0c02893
crossref_primary_10_1021_acsaem_3c00989
crossref_primary_10_3389_fenrg_2022_951701
crossref_primary_10_1002_aenm_202102832
crossref_primary_10_1016_j_cej_2021_133215
crossref_primary_10_1016_j_nanoen_2022_106981
crossref_primary_10_1016_j_susmat_2021_e00288
crossref_primary_10_1002_adfm_202406145
crossref_primary_10_1016_j_electacta_2020_136832
crossref_primary_10_1039_D1TA04529F
crossref_primary_10_1016_j_cej_2021_132705
crossref_primary_10_1016_j_cej_2022_137819
Cites_doi 10.1021/ja211766q
10.1149/2.0401507jes
10.1021/nn403108w
10.1002/adfm.201706609
10.1038/ncomms11203
10.1021/acs.nanolett.6b01819
10.1021/acsenergylett.6b00015
10.1002/anie.201303147
10.1126/science.1213003
10.1016/j.carbon.2017.07.004
10.1149/2.0321602jes
10.1126/science.aam5852
10.1021/ja077498q
10.1039/C7TA09676C
10.1039/C7TA11112F
10.1016/j.isci.2019.08.025
10.1016/j.jpowsour.2014.04.027
10.1016/j.nanoen.2016.12.010
10.1038/ncomms10601
10.3390/en7074588
10.1016/S0008-6223(97)00096-1
10.1039/C5EE01809A
10.1039/C4NR03705G
10.1016/j.jpowsour.2015.02.029
10.1016/j.nanoen.2014.07.012
10.1002/aenm.201702337
10.1039/C4TA04611K
10.1039/C4TA06624C
10.1002/adfm.201501956
10.1002/adfm.200600961
10.1002/aenm.201901663
10.1007/s12274-017-1870-2
10.1039/c002639e
10.1002/adfm.201402815
10.1038/s41578-018-0069-9
10.1002/adfm.201303909
10.1021/acs.nanolett.9b00996
10.1002/aenm.201701918
10.1021/acsenergylett.7b00251
10.1002/anie.201511553
10.1021/ja00040a074
10.1016/j.nanoen.2017.03.029
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.isci.2020.100919
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a
PMC7049659
32114378
10_1016_j_isci_2020_100919
S2589004220301036
Genre Journal Article
GroupedDBID 0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-cb564721c51ac4e2084cf9715f9ef0c67426ce975d2766dac49a59a3f88e00923
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:27:40 EDT 2025
Tue Sep 30 16:52:26 EDT 2025
Wed Oct 01 17:14:28 EDT 2025
Thu Jan 02 22:57:53 EST 2025
Thu Apr 24 23:07:09 EDT 2025
Tue Jul 01 01:03:28 EDT 2025
Tue Jul 25 21:04:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Energy Storage
Nanostructure
Materials Characterization Techniques
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-cb564721c51ac4e2084cf9715f9ef0c67426ce975d2766dac49a59a3f88e00923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ORCID 0000-0001-9852-1645
OpenAccessLink https://doaj.org/article/19f8ca00b2c94005930e977bf625ac3a
PMID 32114378
PQID 2369881359
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049659
proquest_miscellaneous_2369881359
pubmed_primary_32114378
crossref_citationtrail_10_1016_j_isci_2020_100919
crossref_primary_10_1016_j_isci_2020_100919
elsevier_sciencedirect_doi_10_1016_j_isci_2020_100919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-27
PublicationDateYYYYMMDD 2020-03-27
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle iScience
PublicationTitleAlternate iScience
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jiang, Ma, Feng, Xiong (bib15) 2015; 3
Li, Liang, Hou, Zhang, Wang, Zhu, Qian (bib19) 2015; 25
Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (bib38) 2012; 134
Liu, Tai, Zhang, Wang, Pang, Liu, Konstantinov, Guo (bib22) 2017; 35
Delamar, Hitmi, Pinson, Saveant (bib7) 1992; 114
Luo, Zhu, Wen, Wang, Wang (bib24) 2014; 24
Ding, Zhou, Zhang, Tong, Mitlin (bib8) 2018; 8
Wang, Zhang, Xia, Fan, Lv, Tian, Li (bib36) 2018; 11
Cai, Li, Li, Xu, Gao, Zhang, Huo, Chu (bib5) 2017; 32
Xin, Yu, You, Cong, Yin, Du, Guo, Yu, Cui, Goodenough (bib39) 2016; 16
Gallagher, Trask, Bauer, Woehrle, Lux, Tschech, Lamp, Polzin, Ha, Long (bib9) 2016; 163
Mukkabla, Deshagani, Meduri, Deepa, Ghosal (bib26) 2017; 2
Hong, Roh, Kang (bib14) 2018; 6
Zhang, Jia, Yang, Yu, Su, Wang, Shen (bib46) 2017; 122
Li, Sun, Hou, Jiang, Huang, Geng (bib20) 2016; 7
Sun, Zhu, Baumann, Peng, Xu, Shakir, Huang, Duan (bib33) 2019; 4
Zhang (bib43) 2014; 7
Park, Cho, Jang, Yu, Andreah, Miller, Ellison, Goodenough (bib27) 2015; 8
Luo, Wang, Suo, Mao, Fan, Wang (bib25) 2015; 3
Zeng, Wei, Wang, Jiang, Li, Yu (bib42) 2015; 281
Zhang, Qin, Li, Gao (bib44) 2010; 3
Biniak, Szymański, Siedlewski, Świątkowski (bib4) 1997; 35
Cheng, Xiao, Pan, Wang, Wang (bib6) 2018; 8
Liang, Sun, Zhao, Wang, Feng, Zhu, Guo, Huang, Duan (bib21) 2019; 19
Luo, Xu, Zhu, Liu, Zheng, Liu, Langrock, Wang (bib23) 2013; 7
Singh, Kaiser, Hahn (bib30) 2015; 162
Sun, Mei, Liang, Zhao, Lee, Fei, Ding, Lau, Li, Wang (bib32) 2017; 356
Babu, Lewera, Chung, Hunger, Jaegermann, Alonso-Vante, Wieckowski, Oldfield (bib3) 2007; 129
Han, Liu, Shen, Lin, Dai, Ye (bib12) 2015; 25
Li, Yuan, Yi, Liu, Huang (bib18) 2014; 9
Park, Park, Kang (bib28) 2018; 6
Zhang, Fan, Zhu, Xu, Liang, Wei, Qian (bib45) 2014; 6
Kalimuthu, Nallathamby (bib16) 2018; 6
Abouimrane, Dambournet, Chapman, Chupas, Weng, Amine (bib1) 2012; 134
Talapaneni, Hwang, Je, Buyukcakir, Choi, Coskun (bib34) 2016; 55
Wang, Zhu, Wei, Yang, Ma, Ma, Zhou, Yang, Peng, Fei (bib37) 2019; 19
Yang, Xin, Yin, Ye, Zhang, Guo (bib40) 2013; 52
Zhang, Shoaib, Fei, Wang, Zhong, Fan, Wang, Luo, Tan, Wang (bib47) 2019; 9
Yang, Wang, Yu, Rogach (bib41) 2018; 28
Gogotsi, Simon (bib10) 2011; 334
Han, Liu, Ye, Dai (bib11) 2014; 263
He, Chen, Lv, Wen, Li, Wang, Zhang, Qin, He (bib13) 2016; 1
Ania, Khomenko, Raymundo-Piñero, Parra, Beguin (bib2) 2007; 17
Tao, Wang, Liu, Wang, Yao, Zheng, Seh, Cai, Li, Zhou (bib35) 2016; 7
Talapaneni (10.1016/j.isci.2020.100919_bib34) 2016; 55
Park (10.1016/j.isci.2020.100919_bib28) 2018; 6
Zhang (10.1016/j.isci.2020.100919_bib45) 2014; 6
Ania (10.1016/j.isci.2020.100919_bib2) 2007; 17
Ding (10.1016/j.isci.2020.100919_bib8) 2018; 8
Sun (10.1016/j.isci.2020.100919_bib32) 2017; 356
Jiang (10.1016/j.isci.2020.100919_bib15) 2015; 3
Delamar (10.1016/j.isci.2020.100919_bib7) 1992; 114
Luo (10.1016/j.isci.2020.100919_bib23) 2013; 7
Li (10.1016/j.isci.2020.100919_bib20) 2016; 7
Hong (10.1016/j.isci.2020.100919_bib14) 2018; 6
Wang (10.1016/j.isci.2020.100919_bib36) 2018; 11
Li (10.1016/j.isci.2020.100919_bib19) 2015; 25
Wang (10.1016/j.isci.2020.100919_bib37) 2019; 19
Cai (10.1016/j.isci.2020.100919_bib5) 2017; 32
Gogotsi (10.1016/j.isci.2020.100919_bib10) 2011; 334
Han (10.1016/j.isci.2020.100919_bib11) 2014; 263
Babu (10.1016/j.isci.2020.100919_bib3) 2007; 129
Cheng (10.1016/j.isci.2020.100919_bib6) 2018; 8
Singh (10.1016/j.isci.2020.100919_bib30) 2015; 162
Zeng (10.1016/j.isci.2020.100919_bib42) 2015; 281
Luo (10.1016/j.isci.2020.100919_bib24) 2014; 24
Zhang (10.1016/j.isci.2020.100919_bib44) 2010; 3
Biniak (10.1016/j.isci.2020.100919_bib4) 1997; 35
Liu (10.1016/j.isci.2020.100919_bib22) 2017; 35
Luo (10.1016/j.isci.2020.100919_bib25) 2015; 3
Yang (10.1016/j.isci.2020.100919_bib40) 2013; 52
Tao (10.1016/j.isci.2020.100919_bib35) 2016; 7
Yang (10.1016/j.isci.2020.100919_bib41) 2018; 28
He (10.1016/j.isci.2020.100919_bib13) 2016; 1
Gallagher (10.1016/j.isci.2020.100919_bib9) 2016; 163
Xin (10.1016/j.isci.2020.100919_bib38) 2012; 134
Liang (10.1016/j.isci.2020.100919_bib21) 2019; 19
Zhang (10.1016/j.isci.2020.100919_bib43) 2014; 7
Zhang (10.1016/j.isci.2020.100919_bib46) 2017; 122
Abouimrane (10.1016/j.isci.2020.100919_bib1) 2012; 134
Kalimuthu (10.1016/j.isci.2020.100919_bib16) 2018; 6
Park (10.1016/j.isci.2020.100919_bib27) 2015; 8
Sun (10.1016/j.isci.2020.100919_bib33) 2019; 4
Li (10.1016/j.isci.2020.100919_bib18) 2014; 9
Xin (10.1016/j.isci.2020.100919_bib39) 2016; 16
Han (10.1016/j.isci.2020.100919_bib12) 2015; 25
Zhang (10.1016/j.isci.2020.100919_bib47) 2019; 9
Mukkabla (10.1016/j.isci.2020.100919_bib26) 2017; 2
References_xml – volume: 4
  start-page: 45
  year: 2019
  end-page: 60
  ident: bib33
  article-title: Hierarchical 3D electrodes for electrochemical energy storage
  publication-title: Nat. Rev. Mater.
– volume: 6
  start-page: 12952
  year: 2014
  end-page: 12957
  ident: bib45
  article-title: Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance
  publication-title: Nanoscale
– volume: 25
  start-page: 5229
  year: 2015
  end-page: 5238
  ident: bib19
  article-title: A new salt-baked approach for confining selenium in metal complex-derived porous carbon with superior lithium storage properties
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 4384
  year: 2019
  ident: bib37
  article-title: Bacteria derived biological carbon building robust Li-S batteries
  publication-title: Nano Lett.
– volume: 356
  start-page: 599
  year: 2017
  end-page: 604
  ident: bib32
  article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
  publication-title: Science
– volume: 6
  start-page: 1028
  year: 2018
  end-page: 1036
  ident: bib28
  article-title: Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li-Se batteries with high capacity and rate performance
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1901663
  year: 2019
  ident: bib47
  article-title: Hierarchically porous N-Doped carbon fibers as a free standing anode for high-capacity potassium-based dual-ion battery
  publication-title: Adv. Energy Mater.
– volume: 334
  start-page: 917
  year: 2011
  end-page: 918
  ident: bib10
  article-title: True performance metrics in electrochemical energy storage
  publication-title: Science
– volume: 6
  start-page: 7064
  year: 2018
  end-page: 7077
  ident: bib16
  article-title: Optimization of structure and porosity of nitrogen containing mesoporous carbon spheres for effective selenium confinement in futuristic lithium-slelenium batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 1706609
  year: 2018
  ident: bib41
  article-title: Vacuum calcination Induced conversion of selenium/carbon wires to tubes for high-performance sodium-selenium batteries
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 8003
  year: 2013
  end-page: 8010
  ident: bib23
  article-title: Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity
  publication-title: ACS Nano
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  ident: bib38
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 263
  start-page: 85
  year: 2014
  end-page: 89
  ident: bib11
  article-title: Flexible self-standing grapheme-Se@ CNT composite film as a binder-free cathode for rechargeable Li-Se batteries
  publication-title: J. Power Sources
– volume: 35
  start-page: 36
  year: 2017
  end-page: 43
  ident: bib22
  article-title: A new energy storage system: rechargeable potassium-selenium battery
  publication-title: Nano Energy
– volume: 1
  start-page: 16
  year: 2016
  end-page: 20
  ident: bib13
  article-title: Three-dimensional hierarchical graphene-CNT@ Se: a highly efficient freestanding cathode for Li-Se batteries
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 2389
  year: 2015
  end-page: 2395
  ident: bib27
  article-title: Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1701918
  year: 2018
  ident: bib8
  article-title: Selenium Impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 4560
  year: 2016
  end-page: 4568
  ident: bib39
  article-title: The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon
  publication-title: Nano Lett.
– volume: 8
  start-page: 1702337
  year: 2018
  ident: bib6
  article-title: Elastic sandwich-type rGO-VS
  publication-title: Adv. Energy Mater.
– volume: 114
  start-page: 5883
  year: 1992
  end-page: 5884
  ident: bib7
  article-title: Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 8363
  year: 2013
  end-page: 8367
  ident: bib40
  article-title: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries
  publication-title: Angew.Chem. Int. Ed.
– volume: 2
  start-page: 1288
  year: 2017
  end-page: 1295
  ident: bib26
  article-title: Selenium/graphite platelet nanofiber composite for durable Li-Se batteries
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 11203
  year: 2016
  ident: bib35
  article-title: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design
  publication-title: Nat. Commun.
– volume: 24
  start-page: 4082
  year: 2014
  end-page: 4089
  ident: bib24
  article-title: Carbonized polyacrylonitrile-stabilized SeS
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib5
  article-title: Freestanding hollow double-shell Se@CNxnanobelts as large-capacity and high-rate cathodes for Li-Se batteries
  publication-title: Nano Energy
– volume: 11
  start-page: 2460
  year: 2018
  end-page: 2469
  ident: bib36
  article-title: Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries
  publication-title: Nano Res.
– volume: 7
  start-page: 4588
  year: 2014
  end-page: 4600
  ident: bib43
  article-title: Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery
  publication-title: Energies
– volume: 134
  start-page: 4505
  year: 2012
  end-page: 4508
  ident: bib1
  article-title: A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 455
  year: 2015
  end-page: 463
  ident: bib12
  article-title: A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 1799
  year: 1997
  end-page: 1810
  ident: bib4
  article-title: The characterization of activated carbons with oxygen and nitrogen surface groups
  publication-title: Carbon
– volume: 7
  start-page: 10601
  year: 2016
  ident: bib20
  article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1531
  year: 2010
  end-page: 1537
  ident: bib44
  article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
  publication-title: Energy Environ. Sci.
– volume: 281
  start-page: 461
  year: 2015
  end-page: 469
  ident: bib42
  article-title: Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li-Se/Na-Se batteries
  publication-title: J. Power Sources
– volume: 3
  start-page: 555
  year: 2015
  end-page: 561
  ident: bib25
  article-title: In situ formed carbon bonded and encapsulated selenium composites for Li-Se and Na-Se batteries
  publication-title: J. Mater. Chem. A
– volume: 129
  start-page: 15140
  year: 2007
  end-page: 15141
  ident: bib3
  article-title: Selenium becomes metallic in Ru− Se fuel cell catalysts: an EC-NMR and XPS Investigation
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4152
  year: 2018
  end-page: 4160
  ident: bib14
  article-title: Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li-Se batteries
  publication-title: J. Mater. Chem. A
– volume: 122
  start-page: 547
  year: 2017
  end-page: 555
  ident: bib46
  article-title: Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode
  publication-title: Carbon
– volume: 17
  start-page: 1828
  year: 2007
  end-page: 1836
  ident: bib2
  article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 728
  year: 2019
  end-page: 736
  ident: bib21
  article-title: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO
  publication-title: iScience
– volume: 9
  start-page: 229
  year: 2014
  end-page: 236
  ident: bib18
  article-title: Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries
  publication-title: Nano Energy
– volume: 3
  start-page: 4539
  year: 2015
  end-page: 4546
  ident: bib15
  article-title: Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries
  publication-title: J. Mater. Chem. A
– volume: 163
  start-page: A138
  year: 2016
  end-page: A149
  ident: bib9
  article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: A1196
  year: 2015
  end-page: A1201
  ident: bib30
  article-title: Thick electrodes for high energy lithium ion batteries
  publication-title: J. Electrochem. Soc.
– volume: 55
  start-page: 3106
  year: 2016
  end-page: 3111
  ident: bib34
  article-title: Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 4505
  year: 2012
  ident: 10.1016/j.isci.2020.100919_bib1
  article-title: A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211766q
– volume: 162
  start-page: A1196
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib30
  article-title: Thick electrodes for high energy lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0401507jes
– volume: 7
  start-page: 8003
  year: 2013
  ident: 10.1016/j.isci.2020.100919_bib23
  article-title: Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity
  publication-title: ACS Nano
  doi: 10.1021/nn403108w
– volume: 28
  start-page: 1706609
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib41
  article-title: Vacuum calcination Induced conversion of selenium/carbon wires to tubes for high-performance sodium-selenium batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706609
– volume: 7
  start-page: 11203
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib35
  article-title: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11203
– volume: 16
  start-page: 4560
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib39
  article-title: The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01819
– volume: 1
  start-page: 16
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib13
  article-title: Three-dimensional hierarchical graphene-CNT@ Se: a highly efficient freestanding cathode for Li-Se batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00015
– volume: 52
  start-page: 8363
  year: 2013
  ident: 10.1016/j.isci.2020.100919_bib40
  article-title: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries
  publication-title: Angew.Chem. Int. Ed.
  doi: 10.1002/anie.201303147
– volume: 334
  start-page: 917
  year: 2011
  ident: 10.1016/j.isci.2020.100919_bib10
  article-title: True performance metrics in electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 122
  start-page: 547
  year: 2017
  ident: 10.1016/j.isci.2020.100919_bib46
  article-title: Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.004
– volume: 163
  start-page: A138
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib9
  article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0321602jes
– volume: 356
  start-page: 599
  year: 2017
  ident: 10.1016/j.isci.2020.100919_bib32
  article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 129
  start-page: 15140
  year: 2007
  ident: 10.1016/j.isci.2020.100919_bib3
  article-title: Selenium becomes metallic in Ru− Se fuel cell catalysts: an EC-NMR and XPS Investigation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077498q
– volume: 6
  start-page: 1028
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib28
  article-title: Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li-Se batteries with high capacity and rate performance
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09676C
– volume: 6
  start-page: 4152
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib14
  article-title: Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li-Se batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11112F
– volume: 19
  start-page: 728
  year: 2019
  ident: 10.1016/j.isci.2020.100919_bib21
  article-title: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes
  publication-title: iScience
  doi: 10.1016/j.isci.2019.08.025
– volume: 263
  start-page: 85
  year: 2014
  ident: 10.1016/j.isci.2020.100919_bib11
  article-title: Flexible self-standing grapheme-Se@ CNT composite film as a binder-free cathode for rechargeable Li-Se batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.04.027
– volume: 32
  start-page: 1
  year: 2017
  ident: 10.1016/j.isci.2020.100919_bib5
  article-title: Freestanding hollow double-shell Se@CNxnanobelts as large-capacity and high-rate cathodes for Li-Se batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.010
– volume: 7
  start-page: 10601
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib20
  article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10601
– volume: 7
  start-page: 4588
  year: 2014
  ident: 10.1016/j.isci.2020.100919_bib43
  article-title: Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery
  publication-title: Energies
  doi: 10.3390/en7074588
– volume: 35
  start-page: 1799
  year: 1997
  ident: 10.1016/j.isci.2020.100919_bib4
  article-title: The characterization of activated carbons with oxygen and nitrogen surface groups
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00096-1
– volume: 8
  start-page: 2389
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib27
  article-title: Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01809A
– volume: 6
  start-page: 12952
  year: 2014
  ident: 10.1016/j.isci.2020.100919_bib45
  article-title: Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance
  publication-title: Nanoscale
  doi: 10.1039/C4NR03705G
– volume: 281
  start-page: 461
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib42
  article-title: Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li-Se/Na-Se batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.029
– volume: 9
  start-page: 229
  year: 2014
  ident: 10.1016/j.isci.2020.100919_bib18
  article-title: Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.012
– volume: 8
  start-page: 1702337
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib6
  article-title: Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702337
– volume: 3
  start-page: 555
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib25
  article-title: In situ formed carbon bonded and encapsulated selenium composites for Li-Se and Na-Se batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04611K
– volume: 6
  start-page: 7064
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib16
  article-title: Optimization of structure and porosity of nitrogen containing mesoporous carbon spheres for effective selenium confinement in futuristic lithium-slelenium batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 4539
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib15
  article-title: Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06624C
– volume: 134
  start-page: 18510
  year: 2012
  ident: 10.1016/j.isci.2020.100919_bib38
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 5229
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib19
  article-title: A new salt-baked approach for confining selenium in metal complex-derived porous carbon with superior lithium storage properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501956
– volume: 17
  start-page: 1828
  year: 2007
  ident: 10.1016/j.isci.2020.100919_bib2
  article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600961
– volume: 9
  start-page: 1901663
  year: 2019
  ident: 10.1016/j.isci.2020.100919_bib47
  article-title: Hierarchically porous N-Doped carbon fibers as a free standing anode for high-capacity potassium-based dual-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901663
– volume: 11
  start-page: 2460
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib36
  article-title: Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1870-2
– volume: 3
  start-page: 1531
  year: 2010
  ident: 10.1016/j.isci.2020.100919_bib44
  article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c002639e
– volume: 25
  start-page: 455
  year: 2015
  ident: 10.1016/j.isci.2020.100919_bib12
  article-title: A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402815
– volume: 4
  start-page: 45
  year: 2019
  ident: 10.1016/j.isci.2020.100919_bib33
  article-title: Hierarchical 3D electrodes for electrochemical energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-018-0069-9
– volume: 24
  start-page: 4082
  year: 2014
  ident: 10.1016/j.isci.2020.100919_bib24
  article-title: Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium Ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303909
– volume: 19
  start-page: 4384
  year: 2019
  ident: 10.1016/j.isci.2020.100919_bib37
  article-title: Bacteria derived biological carbon building robust Li-S batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00996
– volume: 8
  start-page: 1701918
  year: 2018
  ident: 10.1016/j.isci.2020.100919_bib8
  article-title: Selenium Impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701918
– volume: 2
  start-page: 1288
  year: 2017
  ident: 10.1016/j.isci.2020.100919_bib26
  article-title: Selenium/graphite platelet nanofiber composite for durable Li-Se batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00251
– volume: 55
  start-page: 3106
  year: 2016
  ident: 10.1016/j.isci.2020.100919_bib34
  article-title: Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511553
– volume: 114
  start-page: 5883
  year: 1992
  ident: 10.1016/j.isci.2020.100919_bib7
  article-title: Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00040a074
– volume: 35
  start-page: 36
  year: 2017
  ident: 10.1016/j.isci.2020.100919_bib22
  article-title: A new energy storage system: rechargeable potassium-selenium battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.029
SSID ssj0002002496
Score 2.3644485
Snippet Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current...
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L . However, current...
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100919
SubjectTerms Energy Storage
Materials Characterization Techniques
Nanostructure
Title Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries
URI https://dx.doi.org/10.1016/j.isci.2020.100919
https://www.ncbi.nlm.nih.gov/pubmed/32114378
https://www.proquest.com/docview/2369881359
https://pubmed.ncbi.nlm.nih.gov/PMC7049659
https://doaj.org/article/19f8ca00b2c94005930e977bf625ac3a
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2589-0042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002002496
  issn: 2589-0042
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQTrtMIMYoPyZP4oYikthO4iOrNlVocBmVdrNs1xapuhSN9f_ne3ZatSCNC9fm2an9vuR9T3n-HmMfvBSkNumQpjpdSCHLwnUKiauWNkgXY9B0wPnrt2Y2l1_u1N1eqy-qCcvywHnjPlU6dt6Wpas99fBWWpQBnMVFEHfrRaJGCGN7ydQyfV4jKbzUWU5RTRCgOZ6YycVddOIVyWGdqgQ0yezsRaUk3n8QnP4mn3_WUO4Fpevn7GRkk_xzXsUL9iwML9lyugZ8MIDfUkzpN_f86t4FvGEWvB_4rKczx6kFyopP7YNbDxzvWIDMgQpykFg-X-FmBZWAYOqQzJBag6_zm764DTyLciLHPmXz66vv01kxtlQoPHUuKLxTpBdfeVVZLwN2Tvqo20pFHWLpGyTKjcf-qkXdNs0CNtoqbUXsukDyTOIVOxrWQ3jNeHROaAcfIMxikuhsjBjUBRuQoggxYdV2S40f9cap7cXKbAvLlobcYMgNJrthwj7uxvzMahtPWl-Sp3aWpJSdfgB-zIgf8y_8TJja-tmMpCOTCUzVP3nziy0oDJ5I-sxih7De_DK1aHTXVULB5iyDZPcXBfJtKdpuwtoD-Bys4fDK0P9Iqt9tmaT93_yPRb9lx7QUqqWr23fs6PFhE96DXD268_Qc_QYhECCT
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Selenium+Embedded+in+Hierarchical+Carbon+Nanofibers+for+Ultra-High+Areal+Capacity+Li-Se+Batteries&rft.jtitle=iScience&rft.au=Jian+Zhou&rft.au=Maoxin+Chen&rft.au=Tao+Wang&rft.au=Shengyang+Li&rft.date=2020-03-27&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2020.100919&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon