Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100919 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2020.100919 |
Cover
Abstract | Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.
[Display omitted]
•The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery•The CSe@HNCNFs effectively retard polyselenides diffusion during cycling•The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2•The CSe@HNCNFs displayed excellent cyclic stability and rate performance
Energy Storage; Materials Characterization Techniques; Nanostructure |
---|---|
AbstractList | Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.
[Display omitted]
•The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery•The CSe@HNCNFs effectively retard polyselenides diffusion during cycling•The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2•The CSe@HNCNFs displayed excellent cyclic stability and rate performance
Energy Storage; Materials Characterization Techniques; Nanostructure Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. • The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery • The CSe@HNCNFs effectively retard polyselenides diffusion during cycling • The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2 • The CSe@HNCNFs displayed excellent cyclic stability and rate performance Energy Storage; Materials Characterization Techniques; Nanostructure Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L . However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm displays a specific capacity of 762 mAh g after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm , ultra-high areal capacities of 7.30 mAh cm is achieved, which greatly exceeds those reported previously for Li-Se batteries. Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. : Energy Storage; Materials Characterization Techniques; Nanostructure Subject Areas: Energy Storage, Materials Characterization Techniques, Nanostructure Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm-2 displays a specific capacity of 762 mAh g-1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm-2, ultra-high areal capacities of 7.30 mAh cm-2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm-2 displays a specific capacity of 762 mAh g-1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm-2, ultra-high areal capacities of 7.30 mAh cm-2 is achieved, which greatly exceeds those reported previously for Li-Se batteries. |
ArticleNumber | 100919 |
Author | Zhou, Jian Li, Shengyang Duan, Xiangfeng Chen, Maoxin Zhu, Jian Wang, Tao Zhang, Meng Liu, Jialing Xu, Hanjiao Zhang, Qiusheng Liang, Junfei |
AuthorAffiliation | 1 State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China 2 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA 3 School of Energy and Power Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China |
AuthorAffiliation_xml | – name: 3 School of Energy and Power Engineering, North University of China, Taiyuan, Shanxi 030051, P. R. China – name: 1 State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – name: 2 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA |
Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 2 givenname: Maoxin surname: Chen fullname: Chen, Maoxin organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 3 givenname: Tao surname: Wang fullname: Wang, Tao organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 4 givenname: Shengyang surname: Li fullname: Li, Shengyang organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 5 givenname: Qiusheng surname: Zhang fullname: Zhang, Qiusheng organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 6 givenname: Meng surname: Zhang fullname: Zhang, Meng organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 7 givenname: Hanjiao surname: Xu fullname: Xu, Hanjiao organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 8 givenname: Jialing surname: Liu fullname: Liu, Jialing organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 9 givenname: Junfei surname: Liang fullname: Liang, Junfei organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA – sequence: 10 givenname: Jian orcidid: 0000-0001-9852-1645 surname: Zhu fullname: Zhu, Jian email: jzhu@hnu.edu.cn organization: State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China – sequence: 11 givenname: Xiangfeng surname: Duan fullname: Duan, Xiangfeng organization: Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32114378$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1q3DAUhUVJadJpXqCLomU3nkryr6AUkiHtBIZ2kWYtruWrGRnbmsqagbx95XFSki6ykpDO-S6ce96Ts8ENSMhHzpac8eJLu7SjtkvBxPTAJJdvyIXIK5kwlomzZ_dzcjmOLWNRyUQmi3fkPBWcZ2lZXZB25Y7Q4RDoHcbDHnp609fYNNhQO9C1RQ9e76yGjq7A126gP2FwxtboR2qcp_dd8JCs7XZHrzyeZHvQNjzQjU3ukF5DCOgtjh_IWwPdiJeP54Lcf7_5vVonm18_bldXm0TngodE13mRlYLrnIPOULAq00aWPDcSDdNFmYlCoyzzRpRF0USNhFxCaqoKYw4iXZDbmds4aNXe2x78g3Jg1enB-a0CH6zuUHFpKg2M1ULLjLFcpiySy9oUIgedQmR9m1n7Q91jo2NQHroX0Jc_g92prTuqksWkI29BPj8CvPtzwDGoPu4Nuw4GdIdRibSQVcXTk_TT81n_hjwtKwqqWaC9G0ePRsWYIVg3jbad4kxN1VCtmqqhpmqouRrRKv6zPtFfNX2dTRi3dYxNUFGBg8bGetQhxmlfs_8FCDbRXA |
CitedBy_id | crossref_primary_10_1016_j_jechem_2022_09_026 crossref_primary_10_2139_ssrn_4094625 crossref_primary_10_1016_j_mtcomm_2020_101820 crossref_primary_10_1021_acsami_1c07535 crossref_primary_10_1002_adma_202406894 crossref_primary_10_1016_j_carbon_2022_01_053 crossref_primary_10_1039_D1TA10193E crossref_primary_10_1039_D2NR03220A crossref_primary_10_1016_j_jallcom_2022_167014 crossref_primary_10_1246_cl_210314 crossref_primary_10_1002_smll_202402466 crossref_primary_10_1007_s12598_021_01863_5 crossref_primary_10_1007_s12274_021_3773_5 crossref_primary_10_1002_aenm_202100448 crossref_primary_10_3389_fenrg_2022_1013929 crossref_primary_10_1007_s12598_023_02273_5 crossref_primary_10_1002_sus2_26 crossref_primary_10_1016_j_jallcom_2021_161328 crossref_primary_10_1016_j_cej_2021_133703 crossref_primary_10_1021_acsanm_4c02601 crossref_primary_10_3389_fenrg_2022_996471 crossref_primary_10_1002_smll_202005534 crossref_primary_10_1007_s12598_022_02103_0 crossref_primary_10_1007_s11431_021_2019_4 crossref_primary_10_1039_D2TA01398C crossref_primary_10_3390_batteries9030143 crossref_primary_10_1039_D3GC04804G crossref_primary_10_1007_s11581_022_04476_9 crossref_primary_10_1002_smll_202400812 crossref_primary_10_1002_adfm_202107246 crossref_primary_10_1016_j_jcis_2021_10_034 crossref_primary_10_1016_S1872_5805_22_60596_1 crossref_primary_10_1007_s12598_022_02022_0 crossref_primary_10_1021_acs_langmuir_0c02893 crossref_primary_10_1021_acsaem_3c00989 crossref_primary_10_3389_fenrg_2022_951701 crossref_primary_10_1002_aenm_202102832 crossref_primary_10_1016_j_cej_2021_133215 crossref_primary_10_1016_j_nanoen_2022_106981 crossref_primary_10_1016_j_susmat_2021_e00288 crossref_primary_10_1002_adfm_202406145 crossref_primary_10_1016_j_electacta_2020_136832 crossref_primary_10_1039_D1TA04529F crossref_primary_10_1016_j_cej_2021_132705 crossref_primary_10_1016_j_cej_2022_137819 |
Cites_doi | 10.1021/ja211766q 10.1149/2.0401507jes 10.1021/nn403108w 10.1002/adfm.201706609 10.1038/ncomms11203 10.1021/acs.nanolett.6b01819 10.1021/acsenergylett.6b00015 10.1002/anie.201303147 10.1126/science.1213003 10.1016/j.carbon.2017.07.004 10.1149/2.0321602jes 10.1126/science.aam5852 10.1021/ja077498q 10.1039/C7TA09676C 10.1039/C7TA11112F 10.1016/j.isci.2019.08.025 10.1016/j.jpowsour.2014.04.027 10.1016/j.nanoen.2016.12.010 10.1038/ncomms10601 10.3390/en7074588 10.1016/S0008-6223(97)00096-1 10.1039/C5EE01809A 10.1039/C4NR03705G 10.1016/j.jpowsour.2015.02.029 10.1016/j.nanoen.2014.07.012 10.1002/aenm.201702337 10.1039/C4TA04611K 10.1039/C4TA06624C 10.1002/adfm.201501956 10.1002/adfm.200600961 10.1002/aenm.201901663 10.1007/s12274-017-1870-2 10.1039/c002639e 10.1002/adfm.201402815 10.1038/s41578-018-0069-9 10.1002/adfm.201303909 10.1021/acs.nanolett.9b00996 10.1002/aenm.201701918 10.1021/acsenergylett.7b00251 10.1002/anie.201511553 10.1021/ja00040a074 10.1016/j.nanoen.2017.03.029 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100919 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a PMC7049659 32114378 10_1016_j_isci_2020_100919 S2589004220301036 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-cb564721c51ac4e2084cf9715f9ef0c67426ce975d2766dac49a59a3f88e00923 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Tue Sep 30 16:52:26 EDT 2025 Wed Oct 01 17:14:28 EDT 2025 Thu Jan 02 22:57:53 EST 2025 Thu Apr 24 23:07:09 EDT 2025 Tue Jul 01 01:03:28 EDT 2025 Tue Jul 25 21:04:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Energy Storage Nanostructure Materials Characterization Techniques |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-cb564721c51ac4e2084cf9715f9ef0c67426ce975d2766dac49a59a3f88e00923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ORCID | 0000-0001-9852-1645 |
OpenAccessLink | https://doaj.org/article/19f8ca00b2c94005930e977bf625ac3a |
PMID | 32114378 |
PQID | 2369881359 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7049659 proquest_miscellaneous_2369881359 pubmed_primary_32114378 crossref_citationtrail_10_1016_j_isci_2020_100919 crossref_primary_10_1016_j_isci_2020_100919 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jiang, Ma, Feng, Xiong (bib15) 2015; 3 Li, Liang, Hou, Zhang, Wang, Zhu, Qian (bib19) 2015; 25 Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (bib38) 2012; 134 Liu, Tai, Zhang, Wang, Pang, Liu, Konstantinov, Guo (bib22) 2017; 35 Delamar, Hitmi, Pinson, Saveant (bib7) 1992; 114 Luo, Zhu, Wen, Wang, Wang (bib24) 2014; 24 Ding, Zhou, Zhang, Tong, Mitlin (bib8) 2018; 8 Wang, Zhang, Xia, Fan, Lv, Tian, Li (bib36) 2018; 11 Cai, Li, Li, Xu, Gao, Zhang, Huo, Chu (bib5) 2017; 32 Xin, Yu, You, Cong, Yin, Du, Guo, Yu, Cui, Goodenough (bib39) 2016; 16 Gallagher, Trask, Bauer, Woehrle, Lux, Tschech, Lamp, Polzin, Ha, Long (bib9) 2016; 163 Mukkabla, Deshagani, Meduri, Deepa, Ghosal (bib26) 2017; 2 Hong, Roh, Kang (bib14) 2018; 6 Zhang, Jia, Yang, Yu, Su, Wang, Shen (bib46) 2017; 122 Li, Sun, Hou, Jiang, Huang, Geng (bib20) 2016; 7 Sun, Zhu, Baumann, Peng, Xu, Shakir, Huang, Duan (bib33) 2019; 4 Zhang (bib43) 2014; 7 Park, Cho, Jang, Yu, Andreah, Miller, Ellison, Goodenough (bib27) 2015; 8 Luo, Wang, Suo, Mao, Fan, Wang (bib25) 2015; 3 Zeng, Wei, Wang, Jiang, Li, Yu (bib42) 2015; 281 Zhang, Qin, Li, Gao (bib44) 2010; 3 Biniak, Szymański, Siedlewski, Świątkowski (bib4) 1997; 35 Cheng, Xiao, Pan, Wang, Wang (bib6) 2018; 8 Liang, Sun, Zhao, Wang, Feng, Zhu, Guo, Huang, Duan (bib21) 2019; 19 Luo, Xu, Zhu, Liu, Zheng, Liu, Langrock, Wang (bib23) 2013; 7 Singh, Kaiser, Hahn (bib30) 2015; 162 Sun, Mei, Liang, Zhao, Lee, Fei, Ding, Lau, Li, Wang (bib32) 2017; 356 Babu, Lewera, Chung, Hunger, Jaegermann, Alonso-Vante, Wieckowski, Oldfield (bib3) 2007; 129 Han, Liu, Shen, Lin, Dai, Ye (bib12) 2015; 25 Li, Yuan, Yi, Liu, Huang (bib18) 2014; 9 Park, Park, Kang (bib28) 2018; 6 Zhang, Fan, Zhu, Xu, Liang, Wei, Qian (bib45) 2014; 6 Kalimuthu, Nallathamby (bib16) 2018; 6 Abouimrane, Dambournet, Chapman, Chupas, Weng, Amine (bib1) 2012; 134 Talapaneni, Hwang, Je, Buyukcakir, Choi, Coskun (bib34) 2016; 55 Wang, Zhu, Wei, Yang, Ma, Ma, Zhou, Yang, Peng, Fei (bib37) 2019; 19 Yang, Xin, Yin, Ye, Zhang, Guo (bib40) 2013; 52 Zhang, Shoaib, Fei, Wang, Zhong, Fan, Wang, Luo, Tan, Wang (bib47) 2019; 9 Yang, Wang, Yu, Rogach (bib41) 2018; 28 Gogotsi, Simon (bib10) 2011; 334 Han, Liu, Ye, Dai (bib11) 2014; 263 He, Chen, Lv, Wen, Li, Wang, Zhang, Qin, He (bib13) 2016; 1 Ania, Khomenko, Raymundo-Piñero, Parra, Beguin (bib2) 2007; 17 Tao, Wang, Liu, Wang, Yao, Zheng, Seh, Cai, Li, Zhou (bib35) 2016; 7 Talapaneni (10.1016/j.isci.2020.100919_bib34) 2016; 55 Park (10.1016/j.isci.2020.100919_bib28) 2018; 6 Zhang (10.1016/j.isci.2020.100919_bib45) 2014; 6 Ania (10.1016/j.isci.2020.100919_bib2) 2007; 17 Ding (10.1016/j.isci.2020.100919_bib8) 2018; 8 Sun (10.1016/j.isci.2020.100919_bib32) 2017; 356 Jiang (10.1016/j.isci.2020.100919_bib15) 2015; 3 Delamar (10.1016/j.isci.2020.100919_bib7) 1992; 114 Luo (10.1016/j.isci.2020.100919_bib23) 2013; 7 Li (10.1016/j.isci.2020.100919_bib20) 2016; 7 Hong (10.1016/j.isci.2020.100919_bib14) 2018; 6 Wang (10.1016/j.isci.2020.100919_bib36) 2018; 11 Li (10.1016/j.isci.2020.100919_bib19) 2015; 25 Wang (10.1016/j.isci.2020.100919_bib37) 2019; 19 Cai (10.1016/j.isci.2020.100919_bib5) 2017; 32 Gogotsi (10.1016/j.isci.2020.100919_bib10) 2011; 334 Han (10.1016/j.isci.2020.100919_bib11) 2014; 263 Babu (10.1016/j.isci.2020.100919_bib3) 2007; 129 Cheng (10.1016/j.isci.2020.100919_bib6) 2018; 8 Singh (10.1016/j.isci.2020.100919_bib30) 2015; 162 Zeng (10.1016/j.isci.2020.100919_bib42) 2015; 281 Luo (10.1016/j.isci.2020.100919_bib24) 2014; 24 Zhang (10.1016/j.isci.2020.100919_bib44) 2010; 3 Biniak (10.1016/j.isci.2020.100919_bib4) 1997; 35 Liu (10.1016/j.isci.2020.100919_bib22) 2017; 35 Luo (10.1016/j.isci.2020.100919_bib25) 2015; 3 Yang (10.1016/j.isci.2020.100919_bib40) 2013; 52 Tao (10.1016/j.isci.2020.100919_bib35) 2016; 7 Yang (10.1016/j.isci.2020.100919_bib41) 2018; 28 He (10.1016/j.isci.2020.100919_bib13) 2016; 1 Gallagher (10.1016/j.isci.2020.100919_bib9) 2016; 163 Xin (10.1016/j.isci.2020.100919_bib38) 2012; 134 Liang (10.1016/j.isci.2020.100919_bib21) 2019; 19 Zhang (10.1016/j.isci.2020.100919_bib43) 2014; 7 Zhang (10.1016/j.isci.2020.100919_bib46) 2017; 122 Abouimrane (10.1016/j.isci.2020.100919_bib1) 2012; 134 Kalimuthu (10.1016/j.isci.2020.100919_bib16) 2018; 6 Park (10.1016/j.isci.2020.100919_bib27) 2015; 8 Sun (10.1016/j.isci.2020.100919_bib33) 2019; 4 Li (10.1016/j.isci.2020.100919_bib18) 2014; 9 Xin (10.1016/j.isci.2020.100919_bib39) 2016; 16 Han (10.1016/j.isci.2020.100919_bib12) 2015; 25 Zhang (10.1016/j.isci.2020.100919_bib47) 2019; 9 Mukkabla (10.1016/j.isci.2020.100919_bib26) 2017; 2 |
References_xml | – volume: 4 start-page: 45 year: 2019 end-page: 60 ident: bib33 article-title: Hierarchical 3D electrodes for electrochemical energy storage publication-title: Nat. Rev. Mater. – volume: 6 start-page: 12952 year: 2014 end-page: 12957 ident: bib45 article-title: Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance publication-title: Nanoscale – volume: 25 start-page: 5229 year: 2015 end-page: 5238 ident: bib19 article-title: A new salt-baked approach for confining selenium in metal complex-derived porous carbon with superior lithium storage properties publication-title: Adv. Funct. Mater. – volume: 19 start-page: 4384 year: 2019 ident: bib37 article-title: Bacteria derived biological carbon building robust Li-S batteries publication-title: Nano Lett. – volume: 356 start-page: 599 year: 2017 end-page: 604 ident: bib32 article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage publication-title: Science – volume: 6 start-page: 1028 year: 2018 end-page: 1036 ident: bib28 article-title: Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li-Se batteries with high capacity and rate performance publication-title: J. Mater. Chem. A – volume: 9 start-page: 1901663 year: 2019 ident: bib47 article-title: Hierarchically porous N-Doped carbon fibers as a free standing anode for high-capacity potassium-based dual-ion battery publication-title: Adv. Energy Mater. – volume: 334 start-page: 917 year: 2011 end-page: 918 ident: bib10 article-title: True performance metrics in electrochemical energy storage publication-title: Science – volume: 6 start-page: 7064 year: 2018 end-page: 7077 ident: bib16 article-title: Optimization of structure and porosity of nitrogen containing mesoporous carbon spheres for effective selenium confinement in futuristic lithium-slelenium batteries publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 1706609 year: 2018 ident: bib41 article-title: Vacuum calcination Induced conversion of selenium/carbon wires to tubes for high-performance sodium-selenium batteries publication-title: Adv. Funct. Mater. – volume: 7 start-page: 8003 year: 2013 end-page: 8010 ident: bib23 article-title: Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity publication-title: ACS Nano – volume: 134 start-page: 18510 year: 2012 end-page: 18513 ident: bib38 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 263 start-page: 85 year: 2014 end-page: 89 ident: bib11 article-title: Flexible self-standing grapheme-Se@ CNT composite film as a binder-free cathode for rechargeable Li-Se batteries publication-title: J. Power Sources – volume: 35 start-page: 36 year: 2017 end-page: 43 ident: bib22 article-title: A new energy storage system: rechargeable potassium-selenium battery publication-title: Nano Energy – volume: 1 start-page: 16 year: 2016 end-page: 20 ident: bib13 article-title: Three-dimensional hierarchical graphene-CNT@ Se: a highly efficient freestanding cathode for Li-Se batteries publication-title: ACS Energy Lett. – volume: 8 start-page: 2389 year: 2015 end-page: 2395 ident: bib27 article-title: Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix publication-title: Energy Environ. Sci. – volume: 8 start-page: 1701918 year: 2018 ident: bib8 article-title: Selenium Impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries publication-title: Adv. Energy Mater. – volume: 16 start-page: 4560 year: 2016 end-page: 4568 ident: bib39 article-title: The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon publication-title: Nano Lett. – volume: 8 start-page: 1702337 year: 2018 ident: bib6 article-title: Elastic sandwich-type rGO-VS publication-title: Adv. Energy Mater. – volume: 114 start-page: 5883 year: 1992 end-page: 5884 ident: bib7 article-title: Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 8363 year: 2013 end-page: 8367 ident: bib40 article-title: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries publication-title: Angew.Chem. Int. Ed. – volume: 2 start-page: 1288 year: 2017 end-page: 1295 ident: bib26 article-title: Selenium/graphite platelet nanofiber composite for durable Li-Se batteries publication-title: ACS Energy Lett. – volume: 7 start-page: 11203 year: 2016 ident: bib35 article-title: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design publication-title: Nat. Commun. – volume: 24 start-page: 4082 year: 2014 end-page: 4089 ident: bib24 article-title: Carbonized polyacrylonitrile-stabilized SeS publication-title: Adv. Funct. Mater. – volume: 32 start-page: 1 year: 2017 end-page: 9 ident: bib5 article-title: Freestanding hollow double-shell Se@CNxnanobelts as large-capacity and high-rate cathodes for Li-Se batteries publication-title: Nano Energy – volume: 11 start-page: 2460 year: 2018 end-page: 2469 ident: bib36 article-title: Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries publication-title: Nano Res. – volume: 7 start-page: 4588 year: 2014 end-page: 4600 ident: bib43 article-title: Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery publication-title: Energies – volume: 134 start-page: 4505 year: 2012 end-page: 4508 ident: bib1 article-title: A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 455 year: 2015 end-page: 463 ident: bib12 article-title: A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture publication-title: Adv. Funct. Mater. – volume: 35 start-page: 1799 year: 1997 end-page: 1810 ident: bib4 article-title: The characterization of activated carbons with oxygen and nitrogen surface groups publication-title: Carbon – volume: 7 start-page: 10601 year: 2016 ident: bib20 article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries publication-title: Nat. Commun. – volume: 3 start-page: 1531 year: 2010 end-page: 1537 ident: bib44 article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres publication-title: Energy Environ. Sci. – volume: 281 start-page: 461 year: 2015 end-page: 469 ident: bib42 article-title: Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li-Se/Na-Se batteries publication-title: J. Power Sources – volume: 3 start-page: 555 year: 2015 end-page: 561 ident: bib25 article-title: In situ formed carbon bonded and encapsulated selenium composites for Li-Se and Na-Se batteries publication-title: J. Mater. Chem. A – volume: 129 start-page: 15140 year: 2007 end-page: 15141 ident: bib3 article-title: Selenium becomes metallic in Ru− Se fuel cell catalysts: an EC-NMR and XPS Investigation publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 4152 year: 2018 end-page: 4160 ident: bib14 article-title: Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li-Se batteries publication-title: J. Mater. Chem. A – volume: 122 start-page: 547 year: 2017 end-page: 555 ident: bib46 article-title: Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode publication-title: Carbon – volume: 17 start-page: 1828 year: 2007 end-page: 1836 ident: bib2 article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template publication-title: Adv. Funct. Mater. – volume: 19 start-page: 728 year: 2019 end-page: 736 ident: bib21 article-title: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO publication-title: iScience – volume: 9 start-page: 229 year: 2014 end-page: 236 ident: bib18 article-title: Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries publication-title: Nano Energy – volume: 3 start-page: 4539 year: 2015 end-page: 4546 ident: bib15 article-title: Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries publication-title: J. Mater. Chem. A – volume: 163 start-page: A138 year: 2016 end-page: A149 ident: bib9 article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes publication-title: J. Electrochem. Soc. – volume: 162 start-page: A1196 year: 2015 end-page: A1201 ident: bib30 article-title: Thick electrodes for high energy lithium ion batteries publication-title: J. Electrochem. Soc. – volume: 55 start-page: 3106 year: 2016 end-page: 3111 ident: bib34 article-title: Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 4505 year: 2012 ident: 10.1016/j.isci.2020.100919_bib1 article-title: A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211766q – volume: 162 start-page: A1196 year: 2015 ident: 10.1016/j.isci.2020.100919_bib30 article-title: Thick electrodes for high energy lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0401507jes – volume: 7 start-page: 8003 year: 2013 ident: 10.1016/j.isci.2020.100919_bib23 article-title: Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity publication-title: ACS Nano doi: 10.1021/nn403108w – volume: 28 start-page: 1706609 year: 2018 ident: 10.1016/j.isci.2020.100919_bib41 article-title: Vacuum calcination Induced conversion of selenium/carbon wires to tubes for high-performance sodium-selenium batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706609 – volume: 7 start-page: 11203 year: 2016 ident: 10.1016/j.isci.2020.100919_bib35 article-title: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design publication-title: Nat. Commun. doi: 10.1038/ncomms11203 – volume: 16 start-page: 4560 year: 2016 ident: 10.1016/j.isci.2020.100919_bib39 article-title: The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01819 – volume: 1 start-page: 16 year: 2016 ident: 10.1016/j.isci.2020.100919_bib13 article-title: Three-dimensional hierarchical graphene-CNT@ Se: a highly efficient freestanding cathode for Li-Se batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00015 – volume: 52 start-page: 8363 year: 2013 ident: 10.1016/j.isci.2020.100919_bib40 article-title: An advanced selenium-carbon cathode for rechargeable lithium-selenium batteries publication-title: Angew.Chem. Int. Ed. doi: 10.1002/anie.201303147 – volume: 334 start-page: 917 year: 2011 ident: 10.1016/j.isci.2020.100919_bib10 article-title: True performance metrics in electrochemical energy storage publication-title: Science doi: 10.1126/science.1213003 – volume: 122 start-page: 547 year: 2017 ident: 10.1016/j.isci.2020.100919_bib46 article-title: Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode publication-title: Carbon doi: 10.1016/j.carbon.2017.07.004 – volume: 163 start-page: A138 year: 2016 ident: 10.1016/j.isci.2020.100919_bib9 article-title: Optimizing areal capacities through understanding the limitations of lithium-ion electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.0321602jes – volume: 356 start-page: 599 year: 2017 ident: 10.1016/j.isci.2020.100919_bib32 article-title: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage publication-title: Science doi: 10.1126/science.aam5852 – volume: 129 start-page: 15140 year: 2007 ident: 10.1016/j.isci.2020.100919_bib3 article-title: Selenium becomes metallic in Ru− Se fuel cell catalysts: an EC-NMR and XPS Investigation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077498q – volume: 6 start-page: 1028 year: 2018 ident: 10.1016/j.isci.2020.100919_bib28 article-title: Selenium-infiltrated metal-organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li-Se batteries with high capacity and rate performance publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09676C – volume: 6 start-page: 4152 year: 2018 ident: 10.1016/j.isci.2020.100919_bib14 article-title: Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li-Se batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11112F – volume: 19 start-page: 728 year: 2019 ident: 10.1016/j.isci.2020.100919_bib21 article-title: Ultra-high areal capacity realized in three-dimensional holey graphene/SnO2 composite anodes publication-title: iScience doi: 10.1016/j.isci.2019.08.025 – volume: 263 start-page: 85 year: 2014 ident: 10.1016/j.isci.2020.100919_bib11 article-title: Flexible self-standing grapheme-Se@ CNT composite film as a binder-free cathode for rechargeable Li-Se batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.04.027 – volume: 32 start-page: 1 year: 2017 ident: 10.1016/j.isci.2020.100919_bib5 article-title: Freestanding hollow double-shell Se@CNxnanobelts as large-capacity and high-rate cathodes for Li-Se batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.010 – volume: 7 start-page: 10601 year: 2016 ident: 10.1016/j.isci.2020.100919_bib20 article-title: Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms10601 – volume: 7 start-page: 4588 year: 2014 ident: 10.1016/j.isci.2020.100919_bib43 article-title: Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery publication-title: Energies doi: 10.3390/en7074588 – volume: 35 start-page: 1799 year: 1997 ident: 10.1016/j.isci.2020.100919_bib4 article-title: The characterization of activated carbons with oxygen and nitrogen surface groups publication-title: Carbon doi: 10.1016/S0008-6223(97)00096-1 – volume: 8 start-page: 2389 year: 2015 ident: 10.1016/j.isci.2020.100919_bib27 article-title: Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01809A – volume: 6 start-page: 12952 year: 2014 ident: 10.1016/j.isci.2020.100919_bib45 article-title: Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li-Se batteries with high performance publication-title: Nanoscale doi: 10.1039/C4NR03705G – volume: 281 start-page: 461 year: 2015 ident: 10.1016/j.isci.2020.100919_bib42 article-title: Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li-Se/Na-Se batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.029 – volume: 9 start-page: 229 year: 2014 ident: 10.1016/j.isci.2020.100919_bib18 article-title: Confined selenium within porous carbon nanospheres as cathode for advanced Li-Se batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.012 – volume: 8 start-page: 1702337 year: 2018 ident: 10.1016/j.isci.2020.100919_bib6 article-title: Elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702337 – volume: 3 start-page: 555 year: 2015 ident: 10.1016/j.isci.2020.100919_bib25 article-title: In situ formed carbon bonded and encapsulated selenium composites for Li-Se and Na-Se batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04611K – volume: 6 start-page: 7064 year: 2018 ident: 10.1016/j.isci.2020.100919_bib16 article-title: Optimization of structure and porosity of nitrogen containing mesoporous carbon spheres for effective selenium confinement in futuristic lithium-slelenium batteries publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 4539 year: 2015 ident: 10.1016/j.isci.2020.100919_bib15 article-title: Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium-selenium batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06624C – volume: 134 start-page: 18510 year: 2012 ident: 10.1016/j.isci.2020.100919_bib38 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Mater. Chem. A – volume: 25 start-page: 5229 year: 2015 ident: 10.1016/j.isci.2020.100919_bib19 article-title: A new salt-baked approach for confining selenium in metal complex-derived porous carbon with superior lithium storage properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501956 – volume: 17 start-page: 1828 year: 2007 ident: 10.1016/j.isci.2020.100919_bib2 article-title: The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600961 – volume: 9 start-page: 1901663 year: 2019 ident: 10.1016/j.isci.2020.100919_bib47 article-title: Hierarchically porous N-Doped carbon fibers as a free standing anode for high-capacity potassium-based dual-ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901663 – volume: 11 start-page: 2460 year: 2018 ident: 10.1016/j.isci.2020.100919_bib36 article-title: Polyaniline-coated selenium/carbon composites encapsulated in graphene as efficient cathodes for Li-Se batteries publication-title: Nano Res. doi: 10.1007/s12274-017-1870-2 – volume: 3 start-page: 1531 year: 2010 ident: 10.1016/j.isci.2020.100919_bib44 article-title: Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres publication-title: Energy Environ. Sci. doi: 10.1039/c002639e – volume: 25 start-page: 455 year: 2015 ident: 10.1016/j.isci.2020.100919_bib12 article-title: A free-standing and ultralong-life lithium-selenium battery cathode enabled by 3D mesoporous carbon/graphene hierarchical architecture publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402815 – volume: 4 start-page: 45 year: 2019 ident: 10.1016/j.isci.2020.100919_bib33 article-title: Hierarchical 3D electrodes for electrochemical energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0069-9 – volume: 24 start-page: 4082 year: 2014 ident: 10.1016/j.isci.2020.100919_bib24 article-title: Carbonized polyacrylonitrile-stabilized SeSx cathodes for long cycle life and high power density lithium Ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303909 – volume: 19 start-page: 4384 year: 2019 ident: 10.1016/j.isci.2020.100919_bib37 article-title: Bacteria derived biological carbon building robust Li-S batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00996 – volume: 8 start-page: 1701918 year: 2018 ident: 10.1016/j.isci.2020.100919_bib8 article-title: Selenium Impregnated monolithic carbons as free-standing cathodes for high volumetric energy lithium and sodium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701918 – volume: 2 start-page: 1288 year: 2017 ident: 10.1016/j.isci.2020.100919_bib26 article-title: Selenium/graphite platelet nanofiber composite for durable Li-Se batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00251 – volume: 55 start-page: 3106 year: 2016 ident: 10.1016/j.isci.2020.100919_bib34 article-title: Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511553 – volume: 114 start-page: 5883 year: 1992 ident: 10.1016/j.isci.2020.100919_bib7 article-title: Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00040a074 – volume: 35 start-page: 36 year: 2017 ident: 10.1016/j.isci.2020.100919_bib22 article-title: A new energy storage system: rechargeable potassium-selenium battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.029 |
SSID | ssj0002002496 |
Score | 2.3644485 |
Snippet | Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current... Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L . However, current... Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L-1. However, current... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100919 |
SubjectTerms | Energy Storage Materials Characterization Techniques Nanostructure |
Title | Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries |
URI | https://dx.doi.org/10.1016/j.isci.2020.100919 https://www.ncbi.nlm.nih.gov/pubmed/32114378 https://www.proquest.com/docview/2369881359 https://pubmed.ncbi.nlm.nih.gov/PMC7049659 https://doaj.org/article/19f8ca00b2c94005930e977bf625ac3a |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2589-0042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002002496 issn: 2589-0042 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQTrtMIMYoPyZP4oYikthO4iOrNlVocBmVdrNs1xapuhSN9f_ne3ZatSCNC9fm2an9vuR9T3n-HmMfvBSkNumQpjpdSCHLwnUKiauWNkgXY9B0wPnrt2Y2l1_u1N1eqy-qCcvywHnjPlU6dt6Wpas99fBWWpQBnMVFEHfrRaJGCGN7ydQyfV4jKbzUWU5RTRCgOZ6YycVddOIVyWGdqgQ0yezsRaUk3n8QnP4mn3_WUO4Fpevn7GRkk_xzXsUL9iwML9lyugZ8MIDfUkzpN_f86t4FvGEWvB_4rKczx6kFyopP7YNbDxzvWIDMgQpykFg-X-FmBZWAYOqQzJBag6_zm764DTyLciLHPmXz66vv01kxtlQoPHUuKLxTpBdfeVVZLwN2Tvqo20pFHWLpGyTKjcf-qkXdNs0CNtoqbUXsukDyTOIVOxrWQ3jNeHROaAcfIMxikuhsjBjUBRuQoggxYdV2S40f9cap7cXKbAvLlobcYMgNJrthwj7uxvzMahtPWl-Sp3aWpJSdfgB-zIgf8y_8TJja-tmMpCOTCUzVP3nziy0oDJ5I-sxih7De_DK1aHTXVULB5iyDZPcXBfJtKdpuwtoD-Bys4fDK0P9Iqt9tmaT93_yPRb9lx7QUqqWr23fs6PFhE96DXD268_Qc_QYhECCT |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Selenium+Embedded+in+Hierarchical+Carbon+Nanofibers+for+Ultra-High+Areal+Capacity+Li-Se+Batteries&rft.jtitle=iScience&rft.au=Jian+Zhou&rft.au=Maoxin+Chen&rft.au=Tao+Wang&rft.au=Shengyang+Li&rft.date=2020-03-27&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2020.100919&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19f8ca00b2c94005930e977bf625ac3a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |