Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries
Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100919 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2589-0042 2589-0042 |
DOI | 10.1016/j.isci.2020.100919 |
Cover
Summary: | Lithium selenium (Li-Se) batteries have attracted increasing interest for its high theoretical volumetric capacities up to 3,253 Ah L−1. However, current studies are largely limited to electrodes with rather low mass loading and low areal capacity, resulting in low volumetric performance. Herein, we report a design of covalent selenium embedded in hierarchical nitrogen-doped carbon nanofibers (CSe@HNCNFs) for ultra-high areal capacity Li-Se batteries. The CSe@HNCNFs provide excellent ion and electron transport performance, whereas effectively retard polyselenides diffusion during cycling. We show that the Li-Se battery with mass loading of 1.87 mg cm−2 displays a specific capacity of 762 mAh g−1 after 2,500 cycles, with almost no capacity fading. Furthermore, by increasing the mass loading to 37.31 mg cm−2, ultra-high areal capacities of 7.30 mAh cm−2 is achieved, which greatly exceeds those reported previously for Li-Se batteries.
[Display omitted]
•The CSe@HNCNFs were used as flexible and free-standing cathode for Li-Se battery•The CSe@HNCNFs effectively retard polyselenides diffusion during cycling•The CSe@HNCNFs delivered high areal capacity of 7.30 mAh cm−2•The CSe@HNCNFs displayed excellent cyclic stability and rate performance
Energy Storage; Materials Characterization Techniques; Nanostructure |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2020.100919 |