Probabilistic Analysis of the Grassmann Condition Number

We analyze the probability that a random m -dimensional linear subspace of both intersects a regular closed convex cone  and lies within distance α of an m -dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone...

Full description

Saved in:
Bibliographic Details
Published inFoundations of computational mathematics Vol. 15; no. 1; pp. 3 - 51
Main Authors Amelunxen, Dennis, Bürgisser, Peter
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2015
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1615-3375
1615-3383
DOI10.1007/s10208-013-9178-4

Cover

Abstract We analyze the probability that a random m -dimensional linear subspace of both intersects a regular closed convex cone  and lies within distance α of an m -dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone  C . This allows us to perform an average analysis of the Grassmann condition number for the homogeneous convex feasibility problem ∃ x ∈ C ∖0: Ax =0. The Grassmann condition number is a geometric version of Renegar’s condition number, which we have introduced recently in Amelunxen and Bürgisser (SIAM J. Optim. 22(3):1029–1041 ( 2012 )). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of are chosen i.i.d. standard normal, then for any regular cone  C , we have . The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
AbstractList We analyze the probability that a random m-dimensional linear subspace of [R.sup.n] both intersects a regular closed convex cone C [subset or equal to] [R.sup.n] and lies within distance α of an m-dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone C. This allows us to perform an average analysis of the Grassmann condition number C(A) for the homogeneous convex feasibility problem ∃x ∈ C \ 0 : Ax = 0. The Grassmann condition number is a geometric version of Renegar's condition number, which we have introduced recently in Amelunxen and Burgisser (SIAM J. Optim. 22(3):1029-1041 (2012)). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of A ∈ [R.sup.mxn] are chosen i.i.d. standard normal, then for any regular cone C, we have E[lnC(A)] < 1.5ln(n) + 1.5. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
We analyze the probability that a random m -dimensional linear subspace of both intersects a regular closed convex cone  and lies within distance α of an m -dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone  C . This allows us to perform an average analysis of the Grassmann condition number for the homogeneous convex feasibility problem ∃ x ∈ C ∖0: Ax =0. The Grassmann condition number is a geometric version of Renegar’s condition number, which we have introduced recently in Amelunxen and Bürgisser (SIAM J. Optim. 22(3):1029–1041 ( 2012 )). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of are chosen i.i.d. standard normal, then for any regular cone  C , we have . The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the probability that a random m-dimensional linear subspace of ... both intersects a regular closed convex cone ... and lies within distance [alpha] of an m-dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone C. This allows us to perform an average analysis of the Grassmann condition number [InlineEquation not available: see fulltext.] for the homogeneous convex feasibility problem xC0:Ax=0. The Grassmann condition number is a geometric version of Renegar's condition number, which we have introduced recently in Amelunxen and Bürgisser (SIAM J. Optim. 22(3):1029-1041 ( 2012 )). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of ... are chosen i.i.d. standard normal, then for any regular cone C, we have [InlineEquation not available: see fulltext.]. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the probability that a random m-dimensional linear subspace of ... both intersects a regular closed convex cone ... and lies within distance alpha of an m-dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone C. This allows us to perform an average analysis of the Grassmann condition number [InlineEquation not available: see fulltext.] for the homogeneous convex feasibility problem xC0:Ax=0. The Grassmann condition number is a geometric version of Renegar's condition number, which we have introduced recently in Amelunxen and Buergisser (SIAM J. Optim. 22(3):1029-1041 (2012)). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of ... are chosen i.i.d. standard normal, then for any regular cone C, we have [InlineEquation not available: see fulltext.]. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
Audience Academic
Author Bürgisser, Peter
Amelunxen, Dennis
Author_xml – sequence: 1
  givenname: Dennis
  surname: Amelunxen
  fullname: Amelunxen, Dennis
  email: damelunx@gmail.com
  organization: School of Mathematics, The University of Manchester
– sequence: 2
  givenname: Peter
  surname: Bürgisser
  fullname: Bürgisser, Peter
  organization: Institut für Mathematik, Technische Universität Berlin
BookMark eNp9kE1r3DAQhkVIoPn6Ab0ZeunF7YwtWfJxWdqkEJIemrOQlNFGwSulkveQf18Zh1AC7WmG4XlnmOeMHccUibGPCF8QQH4tCB2oFrBvR5Sq5UfsFAcUbd-r_vitl-IDOyvlCQDFiPyUqZ85WWPDFMocXLOJZnopoTTJN_MjNVfZlLI3MTbbFB_CHFJsbg97S_mCnXgzFbp8refs_vu3X9vr9ubu6sd2c9M60eHcdtJRJ8n6ET2OnQDhLB-UMlJwZ_FBWrTSyJ6M6f3IO_DG9zAQkVV1Jvpz9nnd-5zT7wOVWe9DcTRNJlI6FI3DMI4wKg4V_fQOfUqHXD9aKK66igwL1a7UzkykQ_RpzsbtKFI2U5XqQx1vOKhBgARZeVx5l1Mpmbx-zmFv8otG0It7vbrX1b1e3GteM_JdxoXZLPbqrTD9N9mtyVKvxB3lv374Z-gPvGiY_A
CODEN FCMOA3
CitedBy_id crossref_primary_10_1007_s00454_019_00067_0
crossref_primary_10_1007_s11590_013_0721_7
crossref_primary_10_1007_s10208_022_09551_1
crossref_primary_10_1016_j_jco_2016_12_002
crossref_primary_10_1109_TIT_2022_3161227
crossref_primary_10_1090_S0002_9939_2014_12397_5
crossref_primary_10_15559_22_VMSTA206
crossref_primary_10_1137_19M1284737
Cites_doi 10.1007/BF01581690
10.1016/j.jco.2007.01.002
10.1007/978-3-642-93014-0
10.1007/978-1-4757-2201-7
10.1017/CBO9780511804441
10.1007/s101070100237
10.56021/9781421407944
10.1137/S1052623494268467
10.1007/s101070050001
10.1007/978-3-642-38896-5
10.1017/CBO9780511526282
10.1137/S105262349223352X
10.1287/moor.1040.0120
10.1137/110835177
10.1017/CBO9780511616822
10.1007/s101070050088
10.1137/S1052623497323674
10.1007/BF01582132
10.1137/0805026
10.1137/S1052623401386794
10.1137/S105262349732829X
10.1007/978-3-540-78859-1
10.2307/2371513
10.1137/040616413
10.1090/S0025-5718-08-02060-7
10.1016/S0024-3795(03)00392-6
10.1007/s10107-007-0203-8
10.1090/S0025-5718-1988-0929546-7
10.1137/S1052623400373829
ContentType Journal Article
Copyright SFoCM 2013
COPYRIGHT 2015 Springer
SFoCM 2015
Copyright_xml – notice: SFoCM 2013
– notice: COPYRIGHT 2015 Springer
– notice: SFoCM 2015
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-013-9178-4
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 51
ExternalDocumentID 3569620961
A408650707
10_1007_s10208_013_9178_4
Genre Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
AEIIB
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c521t-27ce27ebf91f192505cb4688a754cb1d7b1b7a73eaa3f9420faf306eeeb8eaa53
IEDL.DBID AGYKE
ISSN 1615-3375
IngestDate Thu Oct 02 05:54:08 EDT 2025
Fri Jul 25 19:15:17 EDT 2025
Thu Jun 12 20:31:34 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Wed Oct 01 05:07:27 EDT 2025
Fri Feb 21 02:36:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 60D05
Tube formulas
Spherically convex sets
52A22
52A55
Perturbation
Convex programming
Average analysis
90C31
Grassmann manifold
90C25
90C22
Condition number
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-27ce27ebf91f192505cb4688a754cb1d7b1b7a73eaa3f9420faf306eeeb8eaa53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1648240360
PQPubID 43692
PageCount 49
ParticipantIDs proquest_miscellaneous_1669909840
proquest_journals_1648240360
gale_infotracgeneralonefile_A408650707
crossref_primary_10_1007_s10208_013_9178_4
crossref_citationtrail_10_1007_s10208_013_9178_4
springer_journals_10_1007_s10208_013_9178_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2015
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References SchneiderR.WeilW.Stochastic and Integral Geometry2008BerlinSpringer10.1007/978-3-540-78859-11175.60003
BoothbyW.M.An Introduction to Differentiable Manifolds and Riemannian Geometry19862OrlandoAcademic Press0596.53001
VeraJ.R.On the complexity of linear programming under finite precision arithmeticMath. Program., Ser. A19988019112310.1007/BF015821320894.901121487309
BonnesenT.FenchelW.Theorie der Konvexen Körper1974BerlinSpringer10.1007/978-3-642-93014-00277.52001Berichtigter Reprint
HelgasonS.Differential Geometry, Lie Groups, and Symmetric Spaces1978New YorkAcademic Press/Harcourt Brace Jovanovich0451.53038
SmaleS.Complexity theory and numerical analysisActa Numerica1997CambridgeCambridge University Press523551
AmelunxenD.BürgisserP.A coordinate-free condition number for convex programmingSIAM J. Optim.20122231029104110.1137/1108351771266.901393023762
ChenZ.DongarraJ.J.Condition numbers of Gaussian random matricesSIAM J. Matrix Anal. Appl.200527360362010.1137/0406164132208323(electronic)
ThorpeJ.A.Elementary Topics in Differential Geometry1994New YorkSpringer
PeñaJ.RenegarJ.Computing approximate solutions for convex conic systems of constraintsMath. Program., Ser. A200087335138310.1007/s1010700500011002.90039
SpivakM.Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus1965New York/AmsterdamBenjamin0141.05403
DemmelJ.W.The probability that a numerical analysis problem is difficultMath. Comp.19885044948010.1090/S0025-5718-1988-0929546-70657.65066929546
S. Glasauer, Integralgeometrie konvexer Körper im sphärischen Raum, Thesis, Univ. Freiburg i. Br. (1995).
HornR.A.JohnsonC.R.Matrix Analysis1990CambridgeCambridge University Press0704.15002Corrected reprint of the 1985 original
BürgisserP.CuckerF.LotzM.The probability that a slightly perturbed numerical analysis problem is difficultMath. Comp.2008772631559158310.1090/S0025-5718-08-02060-71195.650182398780
ChavelI.Riemannian Geometry20062CambridgeCambridge University Press10.1017/CBO97805116168221099.53001A modern introduction
FreundR.M.VeraJ.R.Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithmSIAM J. Optim.199910115517610.1137/S105262349732829X0953.900441722119(electronic)
BoydS.VandenbergheL.Convex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
RenegarJ.Linear programming, complexity theory and elementary functional analysisMath. Program., Ser. A19957032793510855.900851361602
WeylH.On the volume of tubesAm. J. Math.193961246147210.2307/23715131507388
D. Amelunxen, P. Bürgisser, Intrinsic volumes of symmetric cones, arXiv:1205.1863.
BürgisserP.CuckerF.Condition: The Geometry of Numerical Algorithms2013BerlinSpringer
SchneiderR.Convex Bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO97805115262820798.52001
FreundR.M.VeraJ.R.Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear systemMath. Program., Ser. A199986222526010.1007/s1010700500880966.900481725230
BelloniA.FreundR.M.A geometric analysis of Renegar’s condition number, and its interplay with conic curvatureMath. Program., Ser. A200911919510710.1007/s10107-007-0203-81163.900292485489
SpivakM.A Comprehensive Introduction to Differential Geometry. Vol. I19993HoustonPublish or Perish
EpelmanM.FreundR.M.A new condition measure, preconditioners, and relations between different measures of conditioning for conic linear systemsSIAM J. Optim.200212362765510.1137/S10526234003738291046.900381884909(electronic)
RenegarJ.Incorporating condition measures into the complexity theory of linear programmingSIAM J. Optim.19955350652410.1137/08050260838.901391344668
GaoF.HugD.SchneiderR.Intrinsic volumes and polar sets in spherical spaceMath. Notae2003411591762049442(2001/2002). Homage to Luis Santaló. Vol. 1 (Spanish)
BürgisserP.Smoothed analysis of condition numbersFoundations of Computational Mathematics2009CambridgeCambridge University Press141
FedererH.Geometric Measure Theory1969New YorkSpringer0176.00801
KobayashiS.NomizuK.Foundations of Differential Geometry1963New York/LondonInterscience/Wiley0119.37502
PeñaJ.Understanding the geometry of infeasible perturbations of a conic linear systemSIAM J. Optim.200010253455010.1137/S10526234973236740957.150051740958(electronic)
VeraJ.C.RiveraJ.C.PeñaJ.HuiY.A primal-dual symmetric relaxation for homogeneous conic systemsJ. Complex.200723224526110.1016/j.jco.2007.01.0021118.65065
GolubG.H.Van LoanC.F.Matrix Computations20134BaltimoreJohns Hopkins University Press1268.65037
RenegarJ.Some perturbation theory for linear programmingMath. Program., Ser. A1994651739110.1007/BF015816900818.900731288040
FreundR.M.OrdóñezF.On an extension of condition number theory to nonconic convex optimizationMath. Oper. Res.200530117319410.1287/moor.1040.01201082.901512125143
GlasauerS.Integral geometry of spherically convex bodiesDiss. Summ. Math.199611–22192261420746
FilipowskiS.On the complexity of solving feasible linear programs specified with approximate dataSIAM J. Optim.1999941010104010.1137/S10526234942684670955.900861724774Dedicated to John E. Dennis Jr. on his 60th birthday
MoszyńskaM.Selected Topics in Convex Geometry2006BostonBirkhäuser BostonTranslated and revised from the 2001 Polish original
HowardR.The kinematic formula in Riemannian homogeneous spacesMem. Amer. Math. Soc.1993106509vi + 69
D. Amelunxen, Geometric analysis of the condition of the convex feasibility problem, Ph.D. thesis, Univ. Paderborn (2011).
KlainD.A.RotaG.-C.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004[Lincei Lectures]
VeraJ.R.Ill-posedness and the complexity of deciding existence of solutions to linear programsSIAM J. Optim.19966354956910.1137/S105262349223352X0856.900771402192
StanleyR.P.Log-concave and unimodal sequences in algebra, combinatorics, and geometryGraph Theory and Its Applications: East and West1989New YorkN.Y. Acad. Sci.500535
do CarmoM.P.Riemannian Geometry1992BostonBirkhäuser Boston10.1007/978-1-4757-2201-70752.53001Translated from the second Portuguese edition by Francis Flaherty
CheungD.CuckerF.A new condition number for linear programmingMath. Program., Ser. A20019111631741072.905641865268
MorganF.Geometric Measure Theory19952San DiegoAcademic Press0819.49024A beginner’s guide
CuckerF.PeñaJ.A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machineSIAM J. Optim.2001/200212252255410.1137/S1052623401386794(electronic)
PeñaJ.A characterization of the distance to infeasibility under block-structured perturbationsLinear Algebra Appl.200337019321610.1016/S0024-3795(03)00392-61028.150031994328
M. Spivak (9178_CR43) 1965
I. Chavel (9178_CR11) 2006
J.R. Vera (9178_CR48) 1998; 80
D. Cheung (9178_CR13) 2001; 91
J.C. Vera (9178_CR49) 2007; 23
P. Bürgisser (9178_CR10) 2008; 77
R. Schneider (9178_CR41) 2008
Z. Chen (9178_CR12) 2005; 27
J. Peña (9178_CR34) 2000; 10
9178_CR1
9178_CR2
J.W. Demmel (9178_CR15) 1988; 50
D. Amelunxen (9178_CR3) 2012; 22
R.A. Horn (9178_CR28) 1990
S. Boyd (9178_CR7) 2004
F. Morgan (9178_CR32) 1995
F. Cucker (9178_CR14) 2001/2002; 12
S. Smale (9178_CR42) 1997
P. Bürgisser (9178_CR8) 2009
H. Weyl (9178_CR50) 1939; 61
J.A. Thorpe (9178_CR46) 1994
D.A. Klain (9178_CR30) 1997
M.P. do Carmo (9178_CR16) 1992
F. Gao (9178_CR23) 2003; 41
S. Kobayashi (9178_CR31) 1963
R. Schneider (9178_CR40) 1993
S. Filipowski (9178_CR19) 1999; 9
M. Epelman (9178_CR17) 2002; 12
J. Peña (9178_CR36) 2000; 87
9178_CR24
R. Howard (9178_CR29) 1993; 106
M. Spivak (9178_CR44) 1999
J.R. Vera (9178_CR47) 1996; 6
A. Belloni (9178_CR4) 2009; 119
S. Glasauer (9178_CR25) 1996; 1
M. Moszyńska (9178_CR33) 2006
R.P. Stanley (9178_CR45) 1989
R.M. Freund (9178_CR22) 1999; 86
W.M. Boothby (9178_CR6) 1986
G.H. Golub (9178_CR26) 2013
R.M. Freund (9178_CR20) 2005; 30
R.M. Freund (9178_CR21) 1999; 10
T. Bonnesen (9178_CR5) 1974
S. Helgason (9178_CR27) 1978
J. Peña (9178_CR35) 2003; 370
J. Renegar (9178_CR38) 1995; 5
H. Federer (9178_CR18) 1969
P. Bürgisser (9178_CR9) 2013
J. Renegar (9178_CR37) 1994; 65
J. Renegar (9178_CR39) 1995; 70
References_xml – reference: KobayashiS.NomizuK.Foundations of Differential Geometry1963New York/LondonInterscience/Wiley0119.37502
– reference: D. Amelunxen, Geometric analysis of the condition of the convex feasibility problem, Ph.D. thesis, Univ. Paderborn (2011).
– reference: HowardR.The kinematic formula in Riemannian homogeneous spacesMem. Amer. Math. Soc.1993106509vi + 69
– reference: FreundR.M.VeraJ.R.Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear systemMath. Program., Ser. A199986222526010.1007/s1010700500880966.900481725230
– reference: FilipowskiS.On the complexity of solving feasible linear programs specified with approximate dataSIAM J. Optim.1999941010104010.1137/S10526234942684670955.900861724774Dedicated to John E. Dennis Jr. on his 60th birthday
– reference: HornR.A.JohnsonC.R.Matrix Analysis1990CambridgeCambridge University Press0704.15002Corrected reprint of the 1985 original
– reference: MorganF.Geometric Measure Theory19952San DiegoAcademic Press0819.49024A beginner’s guide
– reference: BürgisserP.CuckerF.Condition: The Geometry of Numerical Algorithms2013BerlinSpringer
– reference: SpivakM.A Comprehensive Introduction to Differential Geometry. Vol. I19993HoustonPublish or Perish
– reference: BürgisserP.Smoothed analysis of condition numbersFoundations of Computational Mathematics2009CambridgeCambridge University Press141
– reference: RenegarJ.Linear programming, complexity theory and elementary functional analysisMath. Program., Ser. A19957032793510855.900851361602
– reference: FedererH.Geometric Measure Theory1969New YorkSpringer0176.00801
– reference: KlainD.A.RotaG.-C.Introduction to Geometric Probability1997CambridgeCambridge University Press0896.60004[Lincei Lectures]
– reference: BoothbyW.M.An Introduction to Differentiable Manifolds and Riemannian Geometry19862OrlandoAcademic Press0596.53001
– reference: PeñaJ.Understanding the geometry of infeasible perturbations of a conic linear systemSIAM J. Optim.200010253455010.1137/S10526234973236740957.150051740958(electronic)
– reference: SmaleS.Complexity theory and numerical analysisActa Numerica1997CambridgeCambridge University Press523551
– reference: ThorpeJ.A.Elementary Topics in Differential Geometry1994New YorkSpringer
– reference: FreundR.M.OrdóñezF.On an extension of condition number theory to nonconic convex optimizationMath. Oper. Res.200530117319410.1287/moor.1040.01201082.901512125143
– reference: do CarmoM.P.Riemannian Geometry1992BostonBirkhäuser Boston10.1007/978-1-4757-2201-70752.53001Translated from the second Portuguese edition by Francis Flaherty
– reference: S. Glasauer, Integralgeometrie konvexer Körper im sphärischen Raum, Thesis, Univ. Freiburg i. Br. (1995).
– reference: PeñaJ.RenegarJ.Computing approximate solutions for convex conic systems of constraintsMath. Program., Ser. A200087335138310.1007/s1010700500011002.90039
– reference: RenegarJ.Some perturbation theory for linear programmingMath. Program., Ser. A1994651739110.1007/BF015816900818.900731288040
– reference: DemmelJ.W.The probability that a numerical analysis problem is difficultMath. Comp.19885044948010.1090/S0025-5718-1988-0929546-70657.65066929546
– reference: AmelunxenD.BürgisserP.A coordinate-free condition number for convex programmingSIAM J. Optim.20122231029104110.1137/1108351771266.901393023762
– reference: WeylH.On the volume of tubesAm. J. Math.193961246147210.2307/23715131507388
– reference: VeraJ.R.On the complexity of linear programming under finite precision arithmeticMath. Program., Ser. A19988019112310.1007/BF015821320894.901121487309
– reference: StanleyR.P.Log-concave and unimodal sequences in algebra, combinatorics, and geometryGraph Theory and Its Applications: East and West1989New YorkN.Y. Acad. Sci.500535
– reference: SchneiderR.Convex Bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO97805115262820798.52001
– reference: VeraJ.C.RiveraJ.C.PeñaJ.HuiY.A primal-dual symmetric relaxation for homogeneous conic systemsJ. Complex.200723224526110.1016/j.jco.2007.01.0021118.65065
– reference: ChavelI.Riemannian Geometry20062CambridgeCambridge University Press10.1017/CBO97805116168221099.53001A modern introduction
– reference: RenegarJ.Incorporating condition measures into the complexity theory of linear programmingSIAM J. Optim.19955350652410.1137/08050260838.901391344668
– reference: MoszyńskaM.Selected Topics in Convex Geometry2006BostonBirkhäuser BostonTranslated and revised from the 2001 Polish original
– reference: HelgasonS.Differential Geometry, Lie Groups, and Symmetric Spaces1978New YorkAcademic Press/Harcourt Brace Jovanovich0451.53038
– reference: BoydS.VandenbergheL.Convex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
– reference: SpivakM.Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus1965New York/AmsterdamBenjamin0141.05403
– reference: BelloniA.FreundR.M.A geometric analysis of Renegar’s condition number, and its interplay with conic curvatureMath. Program., Ser. A200911919510710.1007/s10107-007-0203-81163.900292485489
– reference: PeñaJ.A characterization of the distance to infeasibility under block-structured perturbationsLinear Algebra Appl.200337019321610.1016/S0024-3795(03)00392-61028.150031994328
– reference: FreundR.M.VeraJ.R.Condition-based complexity of convex optimization in conic linear form via the ellipsoid algorithmSIAM J. Optim.199910115517610.1137/S105262349732829X0953.900441722119(electronic)
– reference: SchneiderR.WeilW.Stochastic and Integral Geometry2008BerlinSpringer10.1007/978-3-540-78859-11175.60003
– reference: ChenZ.DongarraJ.J.Condition numbers of Gaussian random matricesSIAM J. Matrix Anal. Appl.200527360362010.1137/0406164132208323(electronic)
– reference: GaoF.HugD.SchneiderR.Intrinsic volumes and polar sets in spherical spaceMath. Notae2003411591762049442(2001/2002). Homage to Luis Santaló. Vol. 1 (Spanish)
– reference: D. Amelunxen, P. Bürgisser, Intrinsic volumes of symmetric cones, arXiv:1205.1863.
– reference: GolubG.H.Van LoanC.F.Matrix Computations20134BaltimoreJohns Hopkins University Press1268.65037
– reference: VeraJ.R.Ill-posedness and the complexity of deciding existence of solutions to linear programsSIAM J. Optim.19966354956910.1137/S105262349223352X0856.900771402192
– reference: GlasauerS.Integral geometry of spherically convex bodiesDiss. Summ. Math.199611–22192261420746
– reference: BürgisserP.CuckerF.LotzM.The probability that a slightly perturbed numerical analysis problem is difficultMath. Comp.2008772631559158310.1090/S0025-5718-08-02060-71195.650182398780
– reference: CheungD.CuckerF.A new condition number for linear programmingMath. Program., Ser. A20019111631741072.905641865268
– reference: CuckerF.PeñaJ.A primal-dual algorithm for solving polyhedral conic systems with a finite-precision machineSIAM J. Optim.2001/200212252255410.1137/S1052623401386794(electronic)
– reference: EpelmanM.FreundR.M.A new condition measure, preconditioners, and relations between different measures of conditioning for conic linear systemsSIAM J. Optim.200212362765510.1137/S10526234003738291046.900381884909(electronic)
– reference: BonnesenT.FenchelW.Theorie der Konvexen Körper1974BerlinSpringer10.1007/978-3-642-93014-00277.52001Berichtigter Reprint
– volume: 65
  start-page: 73
  issue: 1
  year: 1994
  ident: 9178_CR37
  publication-title: Math. Program., Ser. A
  doi: 10.1007/BF01581690
– volume-title: Calculus on Manifolds. A Modern Approach to Classical Theorems of Advanced Calculus
  year: 1965
  ident: 9178_CR43
– volume: 23
  start-page: 245
  issue: 2
  year: 2007
  ident: 9178_CR49
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2007.01.002
– volume-title: Matrix Analysis
  year: 1990
  ident: 9178_CR28
– volume-title: Theorie der Konvexen Körper
  year: 1974
  ident: 9178_CR5
  doi: 10.1007/978-3-642-93014-0
– volume-title: Riemannian Geometry
  year: 1992
  ident: 9178_CR16
  doi: 10.1007/978-1-4757-2201-7
– volume-title: Convex Optimization
  year: 2004
  ident: 9178_CR7
  doi: 10.1017/CBO9780511804441
– volume: 91
  start-page: 163
  issue: 1
  year: 2001
  ident: 9178_CR13
  publication-title: Math. Program., Ser. A
  doi: 10.1007/s101070100237
– volume-title: Matrix Computations
  year: 2013
  ident: 9178_CR26
  doi: 10.56021/9781421407944
– volume-title: Geometric Measure Theory
  year: 1995
  ident: 9178_CR32
– volume: 9
  start-page: 1010
  issue: 4
  year: 1999
  ident: 9178_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494268467
– volume: 41
  start-page: 159
  year: 2003
  ident: 9178_CR23
  publication-title: Math. Notae
– volume: 87
  start-page: 351
  issue: 3
  year: 2000
  ident: 9178_CR36
  publication-title: Math. Program., Ser. A
  doi: 10.1007/s101070050001
– volume-title: Condition: The Geometry of Numerical Algorithms
  year: 2013
  ident: 9178_CR9
  doi: 10.1007/978-3-642-38896-5
– ident: 9178_CR2
– volume-title: Convex Bodies: The Brunn-Minkowski Theory
  year: 1993
  ident: 9178_CR40
  doi: 10.1017/CBO9780511526282
– volume-title: An Introduction to Differentiable Manifolds and Riemannian Geometry
  year: 1986
  ident: 9178_CR6
– ident: 9178_CR24
– volume-title: Introduction to Geometric Probability
  year: 1997
  ident: 9178_CR30
– volume-title: Differential Geometry, Lie Groups, and Symmetric Spaces
  year: 1978
  ident: 9178_CR27
– volume-title: Selected Topics in Convex Geometry
  year: 2006
  ident: 9178_CR33
– volume: 6
  start-page: 549
  issue: 3
  year: 1996
  ident: 9178_CR47
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262349223352X
– volume: 30
  start-page: 173
  issue: 1
  year: 2005
  ident: 9178_CR20
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1040.0120
– start-page: 1
  volume-title: Foundations of Computational Mathematics
  year: 2009
  ident: 9178_CR8
– volume-title: Elementary Topics in Differential Geometry
  year: 1994
  ident: 9178_CR46
– ident: 9178_CR1
– volume: 70
  start-page: 279
  issue: 3
  year: 1995
  ident: 9178_CR39
  publication-title: Math. Program., Ser. A
– volume: 22
  start-page: 1029
  issue: 3
  year: 2012
  ident: 9178_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/110835177
– volume-title: Riemannian Geometry
  year: 2006
  ident: 9178_CR11
  doi: 10.1017/CBO9780511616822
– volume: 86
  start-page: 225
  issue: 2
  year: 1999
  ident: 9178_CR22
  publication-title: Math. Program., Ser. A
  doi: 10.1007/s101070050088
– volume: 10
  start-page: 534
  issue: 2
  year: 2000
  ident: 9178_CR34
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497323674
– volume: 1
  start-page: 219
  issue: 1–2
  year: 1996
  ident: 9178_CR25
  publication-title: Diss. Summ. Math.
– volume: 80
  start-page: 91
  issue: 1
  year: 1998
  ident: 9178_CR48
  publication-title: Math. Program., Ser. A
  doi: 10.1007/BF01582132
– volume: 5
  start-page: 506
  issue: 3
  year: 1995
  ident: 9178_CR38
  publication-title: SIAM J. Optim.
  doi: 10.1137/0805026
– volume: 12
  start-page: 522
  issue: 2
  year: 2001/2002
  ident: 9178_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623401386794
– volume: 10
  start-page: 155
  issue: 1
  year: 1999
  ident: 9178_CR21
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262349732829X
– volume-title: A Comprehensive Introduction to Differential Geometry. Vol. I
  year: 1999
  ident: 9178_CR44
– volume: 106
  start-page: vi + 69
  issue: 509
  year: 1993
  ident: 9178_CR29
  publication-title: Mem. Amer. Math. Soc.
– start-page: 523
  volume-title: Acta Numerica
  year: 1997
  ident: 9178_CR42
– volume-title: Stochastic and Integral Geometry
  year: 2008
  ident: 9178_CR41
  doi: 10.1007/978-3-540-78859-1
– volume: 61
  start-page: 461
  issue: 2
  year: 1939
  ident: 9178_CR50
  publication-title: Am. J. Math.
  doi: 10.2307/2371513
– volume: 27
  start-page: 603
  issue: 3
  year: 2005
  ident: 9178_CR12
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040616413
– volume-title: Geometric Measure Theory
  year: 1969
  ident: 9178_CR18
– start-page: 500
  volume-title: Graph Theory and Its Applications: East and West
  year: 1989
  ident: 9178_CR45
– volume: 77
  start-page: 1559
  issue: 263
  year: 2008
  ident: 9178_CR10
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-08-02060-7
– volume: 370
  start-page: 193
  year: 2003
  ident: 9178_CR35
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(03)00392-6
– volume: 119
  start-page: 95
  issue: 1
  year: 2009
  ident: 9178_CR4
  publication-title: Math. Program., Ser. A
  doi: 10.1007/s10107-007-0203-8
– volume: 50
  start-page: 449
  year: 1988
  ident: 9178_CR15
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1988-0929546-7
– volume-title: Foundations of Differential Geometry
  year: 1963
  ident: 9178_CR31
– volume: 12
  start-page: 627
  issue: 3
  year: 2002
  ident: 9178_CR17
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400373829
SSID ssj0015914
ssib031263371
Score 2.1037505
Snippet We analyze the probability that a random m -dimensional linear subspace of both intersects a regular closed convex cone  and lies within distance α of an m...
We analyze the probability that a random m-dimensional linear subspace of [R.sup.n] both intersects a regular closed convex cone C [subset or equal to]...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We analyze the probability that a random m-dimensional linear subspace of ... both...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We analyze the probability that a random m-dimensional linear subspace of ... both...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Analysis
Applications of Mathematics
Computational mathematics
Computer Science
Convex programming
Distribution (Probability theory)
Economics
Feasibility
Foundations
Linear and Multilinear Algebras
Linear programming
Manifolds
Manifolds (Mathematics)
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Number theory
Numerical Analysis
Origins
Perturbation (Mathematics)
Probabilistic analysis
Probability
Subspaces
Texts
Topological manifolds
Title Probabilistic Analysis of the Grassmann Condition Number
URI https://link.springer.com/article/10.1007/s10208-013-9178-4
https://www.proquest.com/docview/1648240360
https://www.proquest.com/docview/1669909840
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1615-3383
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: ABDBF
  dateStart: 20030508
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: AMVHM
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: AFBBN
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: U2A
  dateStart: 20010921
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB5Bcmg5NG0oYluIjIQ4gBYlu971-hgQIQIR9ZBIcLLWjs0BuqnyuPTXd2Z3nfIolbjaXstrz4y_0Yy_AThEzMEdemxhL3Ym5GkiQy20DoWVzhCfmC3Jqm9G6XDCr26T2_od98Jnu_uQZGmpnzx2i8rEK4oWo-vDN6FZ0m01oNm_vLu-WAcPEllSehOWCeNYJD6Y-a9Jnl1HL43yq-hoeekMWjD2y61yTR5OV0t9an6_YHJ85_98hk81CGX9Smq-wIYt2tCqASmr1X2BTb7mg29rwwf_khm7t27WnK-Lbch-zNE2UK4tUT8zz3bCZo7hKHY5R5j-My8Kdj6jMDnKAxuV5Ui-wmRwMT4fhnVdhtBQ-YMwEsZGwmonew4BImIoo3maZblIuNG9qdA9LXIR2zyPneRR1-UOPRNrrc6wLYl3oFHMCrsLTKaRdpo4aBAISTIW04gyMuKMaz6VIoCuPx5latJyqp3xqP7SLdM2KtxGRduoeADH609-VYwd_xt8RGeuSJtxXnNfcX3j4ogWS_U5enwJMSIFsOelQtVavlDoambEZ5h2AzhYd6N-UtAlL-xsRWNSvPAl-tEBnHhBeDLFWyv79q7R3-EjIrmkSiffg8ZyvrL7iJaWuoPaMTg7G3VqLenA5iTq_wH7DQnW
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIADjwGiMCBIiAOo0tamTXOcJmDANnFgEreo6RIu0KE9_j9214zxlLgmbhTZdfJZdj4DnCHm4BYjNr8R2szncSR9LbT2hZE2Iz4xU5BVd3txu8_vnqKn8h332FW7u5RkcVIvPHYLisIryhZj6MOXYYX4q4gwvx8056mDSBaE3oRk_DAUkUtl_rTEp8vo65H8LTdaXDnXW7BRYkXWnBl3G5ZMXoXNEjey0ivHOORaM7ixKqy6B8c4vd6dU7OOdyB5GKELU0ksMTQzR0rChpahFLsZIZp-TfOctYaUzUazsV7RNWQX-tdXj622X7ZP8DPqUuAHIjOBMNrKhkUch1An0zxOklREPNONgdANLVIRmjQNreRB3aYWAwhjjE5wLAr3oJIPc7MPTMaBtpqoYhCvSPLpQUCFE2HCNR9I4UHd6VFlJbc4tbh4UR-syKR6hapXpHrFPbiYf_I2I9b4S_icjKPI6XDd7HlGyY2bI_Yq1eQYmEVEXORBzZlPlc44VhgRJkQ7GNc9OJ1PoxtRbiTNzXBKMjHeyxLDXQ8undkXlvhtZwf_kj6B1fZjt6M6t737Q1hD8BXNKsBrUJmMpuYIAc5EHxc_9DuHg-1-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSDwOvBHlGSTEAVRta9OmOU7AGK-JA5O4RU2XcIEObeP_Y7fNeCNxTdwosuPms-x8BjhEzMEtRmx-M7SZz-NI-lpo7QsjbUZ8YqYgq77txp0ev3qIHqo-pyNX7e5SkuWbBmJpysf1l76tf3j4FhRFWJQ5xjCIT8MMJ54EPNC9oDVJI0SyIPcmVOOHoYhcWvOnJT5dTF9_z9_ypMX1016GxQo3slZp6BWYMvkqLFUYklUeOsIh16bBja3CnHt8jNMLtxOa1tEaJHdDdGcqjyW2ZuYIStjAMpRiF0NE1s9pnrPTAWW20YSsW3QQWYde-_z-tONXrRT8jDoW-IHITCCMtrJpEdMh7Mk0j5MkFRHPdLMvdFOLVIQmTUMredCwqcVgwhijExyLwg2o5YPcbAKTcaCtJtoYxC6S_LsfUBFFmHDN-1J40HB6VFnFM07tLp7UO0MyqV6h6hWpXnEPjiefvJQkG38JH5FxFDkgrps9lvTcuDlislItjkFaRCRGHuw486nKMUcKo8OEKAjjhgcHk2l0KcqTpLkZvJJMjHe0xNDXgxNn9g9L_LazrX9J78Ps3Vlb3Vx2r7dhHnFYVBaD70BtPHw1u4h1xnqvOM9vY4Lxug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+Analysis+of+the+Grassmann+Condition+Number&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Amelunxen%2C+Dennis&rft.au=B%C3%BCrgisser%2C+Peter&rft.date=2015-02-01&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=15&rft.issue=1&rft.spage=3&rft.epage=51&rft_id=info:doi/10.1007%2Fs10208-013-9178-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10208_013_9178_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon