Probabilistic Analysis of the Grassmann Condition Number
We analyze the probability that a random m -dimensional linear subspace of both intersects a regular closed convex cone and lies within distance α of an m -dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone...
Saved in:
| Published in | Foundations of computational mathematics Vol. 15; no. 1; pp. 3 - 51 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.02.2015
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1615-3375 1615-3383 |
| DOI | 10.1007/s10208-013-9178-4 |
Cover
| Summary: | We analyze the probability that a random
m
-dimensional linear subspace of
both intersects a regular closed convex cone
and lies within distance
α
of an
m
-dimensional subspace not intersecting
C
(except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone
C
. This allows us to perform an average analysis of the Grassmann condition number
for the homogeneous convex feasibility problem ∃
x
∈
C
∖0:
Ax
=0. The Grassmann condition number is a geometric version of Renegar’s condition number, which we have introduced recently in Amelunxen and Bürgisser (SIAM J. Optim. 22(3):1029–1041 (
2012
)). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of
are chosen i.i.d. standard normal, then for any regular cone
C
, we have
. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-013-9178-4 |