A Novel Diagnostic Framework with an Optimized Ensemble of Vision Transformers and Convolutional Neural Networks for Enhanced Alzheimer’s Disease Detection in Medical Imaging
Background/Objectives: Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder, which causes memory loss and loss of cognitive functioning, along with behavioral changes. Early detection is important to delay disease progression, timely intervention and to increase patients’ and caregi...
Saved in:
| Published in | Diagnostics (Basel) Vol. 15; no. 6; p. 789 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
20.03.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics15060789 |
Cover
| Summary: | Background/Objectives: Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder, which causes memory loss and loss of cognitive functioning, along with behavioral changes. Early detection is important to delay disease progression, timely intervention and to increase patients’ and caregivers’ quality of life (QoL). One of the major and primary challenges for preventing any disease is to identify the disease at the initial stage through a quick and reliable detection process. Different researchers across the world are still working relentlessly, coming up with significant solutions. Artificial intelligence-based solutions are putting great importance on identifying the disease efficiently, where deep learning with medical imaging is highly being utilized to develop disease detection frameworks. In this work, a novel and optimized detection framework has been proposed that comes with remarkable performance that can classify the level of Alzheimer’s accurately and efficiently. Methods: A powerful vision transformer model (ViT-B16) with three efficient Convolutional Neural Network (CNN) models (VGG19, ResNet152V2, and EfficientNetV2B3) has been trained with a benchmark dataset, ‘OASIS’, that comes with a high volume of brain Magnetic Resonance Images (MRI). Results: A weighted average ensemble technique with a Grasshopper optimization algorithm has been designed and utilized to ensure maximum performance with high accuracy of 97.31%, precision of 97.32, recall of 97.35, and F1 score of 0.97. Conclusions: The work has been compared with other existing state-of-the-art techniques, where it comes with high efficiency, sensitivity, and reliability. The framework can be utilized in IoMT infrastructure where one can access smart and remote diagnosis services. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2075-4418 2075-4418 |
| DOI: | 10.3390/diagnostics15060789 |