Impact of DNA methylation on 3D genome structure
Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study th...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 3243 - 17 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-23142-8 |
Cover
Abstract | Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in
Saccharomyces cerevisiae
and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.
Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure. |
---|---|
AbstractList | Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure. Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure. Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal. Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5’ end of the gene increasing gradually toward the 3’ end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal. Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and function. Here, the authors expressed mammalian DNA methyltransferases in yeast, which have no DNA methylation, to show that methylation has intrinsic effects on chromatin structure. Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5' end of the gene increasing gradually toward the 3' end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal.Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic regulation. We studied a simpler model system, budding yeast, that lacks DNA methylation machinery making it a perfect model system to study the intrinsic role of DNA methylation in chromatin structure and function. We expressed the murine DNA methyltransferases in Saccharomyces cerevisiae and analyzed the correlation between DNA methylation, nucleosome positioning, gene expression and 3D genome organization. Despite lacking the machinery for positioning and reading methylation marks, induced DNA methylation follows a conserved pattern with low methylation levels at the 5' end of the gene increasing gradually toward the 3' end, with concentration of methylated DNA in linkers and nucleosome free regions, and with actively expressed genes showing low and high levels of methylation at transcription start and terminating sites respectively, mimicking the patterns seen in mammals. We also see that DNA methylation increases chromatin condensation in peri-centromeric regions, decreases overall DNA flexibility, and favors the heterochromatin state. Taken together, these results demonstrate that methylation intrinsically modulates chromatin structure and function even in the absence of cellular machinery evolved to recognize and process the methylation signal. |
ArticleNumber | 3243 |
Author | Gut, Ivo G. Labrador, Mireia Flores, Oscar Orozco, Modesto Arcon, Juan Pablo Lema, Rafael Dans, Pablo D. Bellido, David Brun Heath, Isabelle Heath, Simon C. Esteve-Codina, Anna Blanc, Julie Gut, Marta Buitrago, Diana Villegas, Nuria |
Author_xml | – sequence: 1 givenname: Diana orcidid: 0000-0001-9819-1279 surname: Buitrago fullname: Buitrago, Diana organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology, Departamento de Física y Matemáticas, Universidad Autónoma de Manizales – sequence: 2 givenname: Mireia orcidid: 0000-0002-7105-1054 surname: Labrador fullname: Labrador, Mireia organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 3 givenname: Juan Pablo orcidid: 0000-0003-3350-1576 surname: Arcon fullname: Arcon, Juan Pablo organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 4 givenname: Rafael surname: Lema fullname: Lema, Rafael organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 5 givenname: Oscar surname: Flores fullname: Flores, Oscar organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 6 givenname: Anna orcidid: 0000-0003-0361-2873 surname: Esteve-Codina fullname: Esteve-Codina, Anna organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) – sequence: 7 givenname: Julie orcidid: 0000-0002-5367-0628 surname: Blanc fullname: Blanc, Julie organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) – sequence: 8 givenname: Nuria orcidid: 0000-0001-9323-0697 surname: Villegas fullname: Villegas, Nuria organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 9 givenname: David surname: Bellido fullname: Bellido, David organization: Centres Cientifics i Tecnologics, Universitat de Barcelona – sequence: 10 givenname: Marta orcidid: 0000-0002-4063-7159 surname: Gut fullname: Gut, Marta organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) – sequence: 11 givenname: Pablo D. surname: Dans fullname: Dans, Pablo D. organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology, Department of Biological Sciences, CENUR North Coast. University of the Republic – sequence: 12 givenname: Simon C. orcidid: 0000-0002-9550-0897 surname: Heath fullname: Heath, Simon C. organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) – sequence: 13 givenname: Ivo G. surname: Gut fullname: Gut, Ivo G. organization: CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF) – sequence: 14 givenname: Isabelle orcidid: 0000-0002-5828-0020 surname: Brun Heath fullname: Brun Heath, Isabelle email: isabelle.heath@irbbarcelona.org organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology – sequence: 15 givenname: Modesto orcidid: 0000-0002-8608-3278 surname: Orozco fullname: Orozco, Modesto email: modesto.orozco@irbbarcelona.org organization: Institute for Research in Biomedicine (IRB Barcelona) - The Barcelona Institute of Science and Technology (BIST), Joint IRB-BSC Program in Computational Biology, Departament de Bioquímica i Biomedicina, Universitat de Barcelona |
BookMark | eNp9UU1v1DAUtFARLaV_gFMkLlwCfv6Kc0GqWj5WquACZ8txXrZZJfZiO5X67_FuiqA91LLkJ3tm_N7Ma3Lig0dC3gL9AJTrj0mAUE1NGdSMg2C1fkHOGBVQQ8P4yX_1KblIaUfL4i1oIV6RUy6opCD0GaGbeW9drsJQXX-_rGbMt_eTzWPwVdn8utqiDzNWKcfF5SXiG_JysFPCi4fznPz68vnn1bf65sfXzdXlTe0kNLkWqnQHFgVQOoDulQUuJbWsVZoy1LJRvW1V09OuZdz1_cCpGqAfpMKBdsDPyWbV7YPdmX0cZxvvTbCjOV6EuDU25tFNaHqJ2Li2VdCVmTttRUN155RkXYtCy6L1adXaL92MvUOfo50eiT5-8eOt2YY7o0HxRrEi8P5BIIbfC6Zs5jE5nCbrMSzJMMmFAqXhAH33BLoLS_TFqgOqeKAF5QWlV5SLIaWIg3FjPtpe_h8nA9QcUjZryqakbI4pG12o7An17xzPkvhKSgXstxj_dfUM6w-dTrcV |
CitedBy_id | crossref_primary_10_1073_pnas_2300839120 crossref_primary_10_1002_qub2_45 crossref_primary_10_1021_jacs_2c06135 crossref_primary_10_1038_s41594_024_01241_6 crossref_primary_10_1093_nar_gkae689 crossref_primary_10_1016_j_ceb_2022_02_001 crossref_primary_10_1016_j_stem_2023_05_004 crossref_primary_10_2217_epi_2023_0302 crossref_primary_10_3389_fcell_2024_1457387 crossref_primary_10_1038_s41588_024_01826_3 crossref_primary_10_1007_s40726_023_00278_3 crossref_primary_10_7554_eLife_89083 crossref_primary_10_1016_j_sbi_2023_102609 crossref_primary_10_1093_nar_gkad760 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_7554_eLife_89083_3 crossref_primary_10_1093_nar_gkae054 crossref_primary_10_1080_07391102_2024_2434686 crossref_primary_10_1186_s13148_022_01301_y crossref_primary_10_1177_11779322241287120 crossref_primary_10_3390_cimb46090622 crossref_primary_10_3390_polym15071763 crossref_primary_10_1093_jxb_eraf030 crossref_primary_10_1186_s43897_024_00089_0 crossref_primary_10_1016_j_sbi_2022_102430 crossref_primary_10_1017_qrd_2022_21 crossref_primary_10_3390_ijms24010153 crossref_primary_10_3390_cancers16193289 crossref_primary_10_1186_s13148_024_01762_3 crossref_primary_10_1371_journal_pcbi_1011013 crossref_primary_10_1016_j_sbi_2023_102698 crossref_primary_10_1186_s12863_021_01021_x crossref_primary_10_3389_fevo_2021_781498 crossref_primary_10_3390_cancers15020360 crossref_primary_10_59717_j_xinn_life_2024_100047 crossref_primary_10_1016_j_molcel_2022_02_008 crossref_primary_10_1002_bies_202200036 crossref_primary_10_1038_s41467_024_45771_5 crossref_primary_10_1093_dnares_dsae035 crossref_primary_10_1007_s12551_024_01197_3 crossref_primary_10_1016_j_ijbiomac_2023_128768 crossref_primary_10_1038_s41390_024_03674_7 crossref_primary_10_3390_cancers15071991 crossref_primary_10_1088_1478_3975_ace8e5 crossref_primary_10_1016_j_scienta_2024_113073 crossref_primary_10_1016_j_ygyno_2022_12_011 crossref_primary_10_1016_j_sbi_2022_102506 crossref_primary_10_3390_cancers16203524 crossref_primary_10_5483_BMBRep_2023_0197 crossref_primary_10_1038_s41594_022_00839_y crossref_primary_10_1093_nar_gkac097 crossref_primary_10_26508_lsa_202302088 crossref_primary_10_1016_j_livsci_2023_105377 crossref_primary_10_1093_nar_gkae594 crossref_primary_10_1016_j_plaphy_2025_109696 crossref_primary_10_15698_mic2024_08_833 crossref_primary_10_1038_s42003_024_06325_z crossref_primary_10_3390_ijms23105856 crossref_primary_10_1016_j_ibmb_2023_103929 crossref_primary_10_1080_23746149_2024_2358196 crossref_primary_10_3389_fevo_2022_871791 crossref_primary_10_1093_nar_gkae444 crossref_primary_10_1016_j_csbj_2023_02_037 crossref_primary_10_1021_acssynbio_2c00175 |
Cites_doi | 10.1038/nrg3270 10.1093/nar/gkz759 10.1016/j.cell.2006.04.028 10.1038/9727 10.1038/nature08973 10.1186/s13059-014-0550-8 10.1016/j.molcel.2018.11.020 10.1038/nmeth.2148 10.1093/bioinformatics/btr700 10.1038/nmeth.2019 10.1016/j.bbagrm.2013.08.001 10.1186/gb-2009-10-3-r25 10.1101/gr.143008.112 10.1093/bioinformatics/bty690 10.1016/j.celrep.2015.10.063 10.1093/bioinformatics/bts635 10.4161/epi.20523 10.3389/fonc.2014.00080 10.1002/yea.1538 10.1186/1471-2105-12-323 10.1186/s13059-015-0766-2 10.1186/gb-2008-9-9-r137 10.1002/jcp.21224 10.1093/bioinformatics/btp324 10.1016/j.cels.2015.07.012 10.1073/pnas.1512577113 10.1021/bi047634t 10.1093/nar/gkv723 10.1038/nrg2522 10.1038/ng.2443 10.1093/bioinformatics/btr345 10.1021/ja910264z 10.1038/nature09147 10.7554/eLife.06205 10.1038/ng.3291 10.1371/journal.pone.0048401 10.1016/j.cell.2014.01.029 10.15252/embj.201797342 10.1083/jcb.123.4.785 10.1093/hmg/dds035 10.1093/nar/gkaa015 10.1073/pnas.1604365113 10.1074/jbc.M112.366625 10.1158/0008-5472.CAN-13-3659 10.1016/j.stem.2013.08.005 10.1093/nar/gkr263 10.1093/bioinformatics/btu268 10.1016/j.cell.2014.11.021 10.1016/j.ymeth.2017.04.004 10.1083/jcb.141.1.21 10.1038/nature05987 10.1186/s13072-017-0125-5 10.1016/j.molcel.2010.05.004 10.1016/S0092-8674(00)81532-9 10.1038/nrg3354 10.1038/embor.2009.218 10.1038/s41467-019-12355-7 10.1371/journal.pcbi.1005665 10.1089/cmb.2013.0076 10.1093/nar/gkq456 10.1016/j.bpj.2012.03.056 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T 10.1093/nar/gky379 10.1128/MCB.00899-07 10.1038/nature06745 10.1186/s12859-015-0683-0 10.1073/pnas.0905767106 10.1158/0008-5472.CAN-15-3278 10.1186/gb-2012-13-11-r106 10.1101/gr.163592.113 10.1021/ac020050h 10.1371/journal.pgen.1000478 10.1371/journal.pcbi.1003354 10.1038/s41586-019-1534-3 10.1007/978-1-61779-129-1_29 10.1186/s12864-016-3210-4 10.1038/nrg2341 10.1101/gad.274910.115 10.7554/eLife.23623 10.1242/jcs.188250 10.1093/nar/gkaa161 10.7554/eLife.20832 10.1016/j.jgg.2019.12.006 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-23142-8 |
DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_d5ee7c9961b041b8a4708bc652b9e485 PMC8163762 10_1038_s41467_021_23142_8 |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions) grantid: No. 754510; No. 754510 funderid: https://doi.org/10.13039/100010665 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 European Institute of Innovation and Technology (H2020 The European Institute of Innovation and Technology) grantid: BioExcel 675728; MuG676556 funderid: https://doi.org/10.13039/100010686 – fundername: ISCIII /MINECO (PT17/0009/0019) FEDER – fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: ‘Ideas' Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)) grantid: ERC_SimDNA funderid: https://doi.org/10.13039/100011199 – fundername: Spanish Ministry of Science (BIO2012-32868) the Catalan SGR the Instituto Nacional de Bioinformática – fundername: ; – fundername: ; grantid: No. 754510; No. 754510 – fundername: ; grantid: ERC_SimDNA – fundername: ; grantid: BioExcel 675728; MuG676556 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c517t-464671ae4100f18d6a13550a296802e8576da967d0b923cddf306f1df56ef0b13 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:44 EDT 2025 Thu Aug 21 18:38:55 EDT 2025 Thu Sep 04 23:28:39 EDT 2025 Wed Aug 13 08:05:08 EDT 2025 Thu Apr 24 22:50:46 EDT 2025 Tue Jul 01 04:17:26 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-464671ae4100f18d6a13550a296802e8576da967d0b923cddf306f1df56ef0b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9323-0697 0000-0002-8608-3278 0000-0002-5828-0020 0000-0001-9819-1279 0000-0002-5367-0628 0000-0003-3350-1576 0000-0003-0361-2873 0000-0002-9550-0897 0000-0002-4063-7159 0000-0002-7105-1054 |
OpenAccessLink | https://www.proquest.com/docview/2533558403?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 34050148 |
PQID | 2533558403 |
PQPubID | 546298 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d5ee7c9961b041b8a4708bc652b9e485 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8163762 proquest_miscellaneous_2534616812 proquest_journals_2533558403 crossref_citationtrail_10_1038_s41467_021_23142_8 crossref_primary_10_1038_s41467_021_23142_8 springer_journals_10_1038_s41467_021_23142_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-28 |
PublicationDateYYYYMMDD | 2021-05-28 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Miranda, Jones (CR7) 2007; 213 Miele, Bystricky, Dekker (CR54) 2009; 5 Flores, Orozco (CR64) 2011; 27 Lun, Smyth (CR76) 2015; 16 Orlanski (CR6) 2016; 113 Dobin (CR65) 2013; 29 Swygert (CR34) 2019; 73 CR39 Jin, Trelles-Sticken, Scherthan, Loidl (CR52) 1998; 141 CR37 Buitrago (CR45) 2019; 47 Kelly (CR29) 2012; 22 Gari, Piedrafita, Aldea, Herrero (CR38) 1997; 13 Rao (CR75) 2014; 159 CR31 Felle (CR25) 2011; 39 Li, Dewey (CR66) 2011; 12 Kulis, Queiros, Beekman, Martin-Subero (CR15) 2013; 1829 Nocetti, Whitehouse (CR47) 2016; 30 Belton (CR49) 2015; 13 Walther (CR82) 2020; 48 Otani (CR41) 2009; 10 Zhang (CR71) 2008; 9 Lassadi, Bystricky (CR50) 2011; 745 Bulkowska (CR35) 2007; 24 Wang (CR51) 2016; 129 Collings, Anderson (CR20) 2017; 10 Takebayashi, Tamura, Matsuoka, Okano (CR44) 2007; 27 Subramaniam, Thombre, Dhar, Anant (CR11) 2014; 4 Choy (CR21) 2010; 132 Tjong (CR81) 2016; 113 Planet, Attolini, Reina, Flores, Rossell (CR63) 2012; 28 Adhikari, Trieu, Cheng (CR77) 2016; 17 CR83 Afgan (CR69) 2018; 46 Varoquaux, Ay, Noble, Vert (CR78) 2014; 30 Jiang, Pugh (CR17) 2009; 10 Imakaev (CR80) 2012; 9 Duan (CR30) 2010; 465 Suzuki, Bird (CR16) 2008; 9 Huff, Zilberman (CR26) 2014; 156 Klutstein, Nejman, Greenfield, Cedar (CR13) 2016; 76 Portella, Battistini, Orozco (CR19) 2013; 9 Hu (CR36) 2009; 106 Schlenstedt, Hurt, Doye, Silver (CR60) 1993; 123 Li, Durbin (CR70) 2009; 25 Heyn (CR12) 2012; 7 Siegfried (CR14) 1999; 22 Morselli (CR27) 2015; 4 Rutledge, Russo, Belton, Dekker, Broach (CR33) 2015; 43 Langmead, Trapnell, Pop, Salzberg (CR61) 2009; 10 Ooi (CR40) 2007; 448 Kulis (CR56) 2015; 47 Guidi (CR48) 2015; 16 Bagci, Fisher (CR55) 2013; 13 Shen (CR57) 2010; 38 Mayol (CR10) 2012; 7 Love, Huber, Anders (CR67) 2014; 15 Cokus (CR23) 2008; 452 Winkelmann (CR4) 2012; 21 Pedersen (CR28) 2014; 24 Heyn, Esteller (CR2) 2012; 13 Bird, Wolffe (CR1) 1999; 99 Nowialis (CR43) 2019; 10 Holz-Schietinger, Matje, Reich (CR3) 2012; 287 Chodavarapu (CR22) 2010; 466 Weinberg (CR42) 2019; 573 Zhang, Li, Toh, Sung (CR79) 2013; 20 Perez (CR18) 2012; 102 Heinz (CR68) 2010; 38 Nadal-Ribelles (CR46) 2012; 13 Belaghzal, Dekker, Gibcus (CR72) 2017; 123 Smith, Meissner (CR5) 2013; 14 Lazar-Stefanita (CR32) 2017; 36 CR62 Merkel (CR59) 2019; 35 Schindelin (CR84) 2012; 9 Kulis (CR9) 2012; 44 Serra (CR73) 2017; 13 Noma, Cam, Maraia, Grewal (CR53) 2006; 125 Durand (CR74) 2016; 3 Carmona (CR8) 2014; 74 Gowher (CR24) 2005; 44 Friso, Choi, Dolnikowski, Selhub (CR58) 2002; 74 E Planet (23142_CR63) 2012; 28 M Nadal-Ribelles (23142_CR46) 2012; 13 E Gari (23142_CR38) 1997; 13 TB Miranda (23142_CR7) 2007; 213 JS Choy (23142_CR21) 2010; 132 Q Jin (23142_CR52) 1998; 141 M Guidi (23142_CR48) 2015; 16 JT Huff (23142_CR26) 2014; 156 L Shen (23142_CR57) 2010; 38 M Kulis (23142_CR56) 2015; 47 H Gowher (23142_CR24) 2005; 44 G Portella (23142_CR19) 2013; 9 H Heyn (23142_CR2) 2012; 13 23142_CR31 A Merkel (23142_CR59) 2019; 35 H Li (23142_CR70) 2009; 25 SS Rao (23142_CR75) 2014; 159 B Langmead (23142_CR61) 2009; 10 M Morselli (23142_CR27) 2015; 4 23142_CR37 C Jiang (23142_CR17) 2009; 10 A Perez (23142_CR18) 2012; 102 R Wang (23142_CR51) 2016; 129 H Bagci (23142_CR55) 2013; 13 23142_CR39 Y Zhang (23142_CR71) 2008; 9 D Subramaniam (23142_CR11) 2014; 4 SJ Cokus (23142_CR23) 2008; 452 RK Chodavarapu (23142_CR22) 2010; 466 J Otani (23142_CR41) 2009; 10 MI Love (23142_CR67) 2014; 15 ZD Smith (23142_CR5) 2013; 14 M Kulis (23142_CR15) 2013; 1829 D Buitrago (23142_CR45) 2019; 47 H Tjong (23142_CR81) 2016; 113 J Schindelin (23142_CR84) 2012; 9 H Heyn (23142_CR12) 2012; 7 Z Siegfried (23142_CR14) 1999; 22 SK Ooi (23142_CR40) 2007; 448 AT Lun (23142_CR76) 2015; 16 23142_CR83 M Klutstein (23142_CR13) 2016; 76 DN Weinberg (23142_CR42) 2019; 573 S Takebayashi (23142_CR44) 2007; 27 U Bulkowska (23142_CR35) 2007; 24 G Mayol (23142_CR10) 2012; 7 A Dobin (23142_CR65) 2013; 29 G Schlenstedt (23142_CR60) 1993; 123 B Adhikari (23142_CR77) 2016; 17 SG Swygert (23142_CR34) 2019; 73 S Heinz (23142_CR68) 2010; 38 JL Hu (23142_CR36) 2009; 106 I Lassadi (23142_CR50) 2011; 745 C Holz-Schietinger (23142_CR3) 2012; 287 TK Kelly (23142_CR29) 2012; 22 M Imakaev (23142_CR80) 2012; 9 M Felle (23142_CR25) 2011; 39 B Li (23142_CR66) 2011; 12 Z Zhang (23142_CR79) 2013; 20 A Miele (23142_CR54) 2009; 5 J Walther (23142_CR82) 2020; 48 J Winkelmann (23142_CR4) 2012; 21 MT Rutledge (23142_CR33) 2015; 43 K Noma (23142_CR53) 2006; 125 Z Duan (23142_CR30) 2010; 465 JS Pedersen (23142_CR28) 2014; 24 F Serra (23142_CR73) 2017; 13 MM Suzuki (23142_CR16) 2008; 9 AP Bird (23142_CR1) 1999; 99 N Nocetti (23142_CR47) 2016; 30 JM Belton (23142_CR49) 2015; 13 S Orlanski (23142_CR6) 2016; 113 NC Durand (23142_CR74) 2016; 3 O Flores (23142_CR64) 2011; 27 H Belaghzal (23142_CR72) 2017; 123 N Varoquaux (23142_CR78) 2014; 30 FJ Carmona (23142_CR8) 2014; 74 L Lazar-Stefanita (23142_CR32) 2017; 36 23142_CR62 E Afgan (23142_CR69) 2018; 46 P Nowialis (23142_CR43) 2019; 10 CK Collings (23142_CR20) 2017; 10 S Friso (23142_CR58) 2002; 74 M Kulis (23142_CR9) 2012; 44 |
References_xml | – volume: 13 start-page: 679 year: 2012 end-page: 692 ident: CR2 article-title: DNA methylation profiling in the clinic: applications and challenges publication-title: Nat. Rev. Genet doi: 10.1038/nrg3270 – volume: 47 start-page: 9511 year: 2019 end-page: 9523 ident: CR45 article-title: Nucleosome dynamics: a new tool for the dynamic analysis of nucleosome positioning publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz759 – volume: 125 start-page: 859 year: 2006 end-page: 872 ident: CR53 article-title: A role for TFIIIC transcription factor complex in genome organization publication-title: Cell doi: 10.1016/j.cell.2006.04.028 – volume: 22 start-page: 203 year: 1999 end-page: 206 ident: CR14 article-title: DNA methylation represses transcription in vivo publication-title: Nat. Genet. doi: 10.1038/9727 – ident: CR39 – volume: 465 start-page: 363 year: 2010 end-page: 367 ident: CR30 article-title: A three-dimensional model of the yeast genome publication-title: Nature doi: 10.1038/nature08973 – volume: 15 year: 2014 ident: CR67 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 73 start-page: 533 year: 2019 end-page: 546 e4 ident: CR34 article-title: Condensin-dependent chromatin compaction represses transcription globally during quiescence publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.020 – volume: 9 start-page: 999 year: 2012 end-page: 1003 ident: CR80 article-title: Iterative correction of Hi-C data reveals hallmarks of chromosome organization publication-title: Nat. Methods doi: 10.1038/nmeth.2148 – volume: 28 start-page: 589 year: 2012 end-page: 590 ident: CR63 article-title: htSeqTools: high-throughput sequencing quality control, processing and visualization in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr700 – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: CR84 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 1829 start-page: 1161 year: 2013 end-page: 1174 ident: CR15 article-title: Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbagrm.2013.08.001 – volume: 10 year: 2009 ident: CR61 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 22 start-page: 2497 year: 2012 end-page: 2506 ident: CR29 article-title: Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules publication-title: Genome Res. doi: 10.1101/gr.143008.112 – volume: 35 start-page: 737 year: 2019 end-page: 742 ident: CR59 article-title: gemBS: high throughput processing for DNA methylation data from bisulfite sequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty690 – volume: 13 start-page: 1855 year: 2015 end-page: 1867 ident: CR49 article-title: The conformation of yeast chromosome III is mating type dependent and controlled by the recombination enhancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.063 – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: CR65 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 7 start-page: 542 year: 2012 end-page: 550 ident: CR12 article-title: Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient publication-title: Epigenetics doi: 10.4161/epi.20523 – volume: 4 start-page: 80 year: 2014 ident: CR11 article-title: DNA methyltransferases: a novel target for prevention and therapy publication-title: Front Oncol. doi: 10.3389/fonc.2014.00080 – volume: 24 start-page: 871 year: 2007 end-page: 882 ident: CR35 article-title: Expression of murine DNA methyltransferases Dnmt1 and Dnmt3a in the yeast Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.1538 – volume: 12 year: 2011 ident: CR66 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-12-323 – volume: 16 year: 2015 ident: CR48 article-title: Spatial reorganization of telomeres in long-lived quiescent cells publication-title: Genome Biol. doi: 10.1186/s13059-015-0766-2 – volume: 9 year: 2008 ident: CR71 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 213 start-page: 384 year: 2007 end-page: 390 ident: CR7 article-title: DNA methylation: the nuts and bolts of repression publication-title: J. Cell Physiol. doi: 10.1002/jcp.21224 – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: CR70 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 3 start-page: 99 year: 2016 end-page: 101 ident: CR74 article-title: Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom publication-title: Cell Syst. doi: 10.1016/j.cels.2015.07.012 – volume: 113 start-page: E1663 year: 2016 end-page: E1672 ident: CR81 article-title: Population-based 3D genome structure analysis reveals driving forces in spatial genome organization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1512577113 – volume: 44 start-page: 9899 year: 2005 end-page: 9904 ident: CR24 article-title: De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases publication-title: Biochemistry doi: 10.1021/bi047634t – volume: 43 start-page: 8299 year: 2015 end-page: 8313 ident: CR33 article-title: The yeast genome undergoes significant topological reorganization in quiescence publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv723 – volume: 10 start-page: 161 year: 2009 end-page: 172 ident: CR17 article-title: Nucleosome positioning and gene regulation: advances through genomics publication-title: Nat. Rev. Genet doi: 10.1038/nrg2522 – volume: 44 start-page: 1236 year: 2012 end-page: 1242 ident: CR9 article-title: Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia publication-title: Nat. Genet doi: 10.1038/ng.2443 – volume: 27 start-page: 2149 year: 2011 end-page: 2150 ident: CR64 article-title: nucleR: a package for non-parametric nucleosome positioning publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr345 – volume: 132 start-page: 1782 year: 2010 end-page: 1783 ident: CR21 article-title: DNA methylation increases nucleosome compaction and rigidity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910264z – volume: 466 start-page: 388 year: 2010 end-page: 392 ident: CR22 article-title: Relationship between nucleosome positioning and DNA methylation publication-title: Nature doi: 10.1038/nature09147 – volume: 4 start-page: e06205 year: 2015 ident: CR27 article-title: In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse publication-title: Elife doi: 10.7554/eLife.06205 – volume: 47 start-page: 746 year: 2015 end-page: 756 ident: CR56 article-title: Whole-genome fingerprint of the DNA methylome during human B cell differentiation publication-title: Nat. Genet doi: 10.1038/ng.3291 – volume: 7 start-page: e48401 year: 2012 ident: CR10 article-title: DNA hypomethylation affects cancer-related biological functions and genes relevant in neuroblastoma pathogenesis publication-title: PLoS One doi: 10.1371/journal.pone.0048401 – volume: 156 start-page: 1286 year: 2014 end-page: 1297 ident: CR26 article-title: Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes publication-title: Cell doi: 10.1016/j.cell.2014.01.029 – volume: 36 start-page: 2684 year: 2017 end-page: 2697 ident: CR32 article-title: Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle publication-title: EMBO J. doi: 10.15252/embj.201797342 – volume: 123 start-page: 785 year: 1993 end-page: 798 ident: CR60 article-title: Reconstitution of nuclear protein transport with semi-intact yeast cells publication-title: J. Cell Biol. doi: 10.1083/jcb.123.4.785 – volume: 21 start-page: 2205 year: 2012 end-page: 2210 ident: CR4 article-title: Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy publication-title: Hum. Mol. Genet doi: 10.1093/hmg/dds035 – volume: 48 start-page: e29 year: 2020 ident: CR82 article-title: A multi-modal coarse grained model of DNA flexibility mappable to the atomistic level publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa015 – volume: 113 start-page: 5018 year: 2016 end-page: 5023 ident: CR6 article-title: Tissue-specific DNA demethylation is required for proper B-cell differentiation and function publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604365113 – volume: 287 start-page: 30941 year: 2012 end-page: 30951 ident: CR3 article-title: Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.366625 – volume: 74 start-page: 5608 year: 2014 end-page: 5619 ident: CR8 article-title: A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3659 – ident: CR37 – volume: 13 start-page: 265 year: 2013 end-page: 269 ident: CR55 article-title: DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.08.005 – volume: 39 start-page: 6956 year: 2011 end-page: 6969 ident: CR25 article-title: Nucleosomes protect DNA from DNA methylation in vivo and in vitro publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr263 – volume: 30 start-page: i26 year: 2014 end-page: i33 ident: CR78 article-title: A statistical approach for inferring the 3D structure of the genome publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu268 – volume: 159 start-page: 1665 year: 2014 end-page: 1680 ident: CR75 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 123 start-page: 56 year: 2017 end-page: 65 ident: CR72 article-title: 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation publication-title: Methods doi: 10.1016/j.ymeth.2017.04.004 – volume: 141 start-page: 21 year: 1998 end-page: 29 ident: CR52 article-title: Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase publication-title: J. Cell Biol. doi: 10.1083/jcb.141.1.21 – volume: 448 start-page: 714 year: 2007 end-page: 717 ident: CR40 article-title: DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA publication-title: Nature doi: 10.1038/nature05987 – volume: 10 start-page: 18 year: 2017 ident: CR20 article-title: Links between DNA methylation and nucleosome occupancy in the human genome publication-title: Epigenetics Chromatin doi: 10.1186/s13072-017-0125-5 – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: CR68 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 99 start-page: 451 year: 1999 end-page: 454 ident: CR1 article-title: Methylation-induced repression–belts, braces, and chromatin publication-title: Cell doi: 10.1016/S0092-8674(00)81532-9 – volume: 14 start-page: 204 year: 2013 end-page: 220 ident: CR5 article-title: DNA methylation: roles in mammalian development publication-title: Nat. Rev. Genet doi: 10.1038/nrg3354 – volume: 10 start-page: 1235 year: 2009 end-page: 1241 ident: CR41 article-title: Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – volume: 10 year: 2019 ident: CR43 article-title: Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions publication-title: Nat. Commun. doi: 10.1038/s41467-019-12355-7 – volume: 13 start-page: e1005665 year: 2017 ident: CR73 article-title: Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1005665 – volume: 20 start-page: 831 year: 2013 end-page: 846 ident: CR79 article-title: 3D chromosome modeling with semi-definite programming and Hi-C data publication-title: J. Comput Biol. doi: 10.1089/cmb.2013.0076 – volume: 38 start-page: 6054 year: 2010 end-page: 6064 ident: CR57 article-title: A single amino acid substitution confers enhanced methylation activity of mammalian Dnmt3b on chromatin DNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq456 – volume: 102 start-page: 2140 year: 2012 end-page: 2148 ident: CR18 article-title: Impact of methylation on the physical properties of DNA publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.03.056 – volume: 13 start-page: 837 year: 1997 end-page: 848 ident: CR38 article-title: A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T – volume: 46 start-page: W537 year: 2018 end-page: W544 ident: CR69 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky379 – volume: 27 start-page: 8243 year: 2007 end-page: 8258 ident: CR44 article-title: Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00899-07 – ident: CR31 – volume: 452 start-page: 215 year: 2008 end-page: 219 ident: CR23 article-title: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning publication-title: Nature doi: 10.1038/nature06745 – volume: 16 year: 2015 ident: CR76 article-title: diffHic: a bioconductor package to detect differential genomic interactions in Hi-C data publication-title: BMC Bioinforma. doi: 10.1186/s12859-015-0683-0 – volume: 106 start-page: 22187 year: 2009 end-page: 22192 ident: CR36 article-title: The N-terminus of histone H3 is required for de novo DNA methylation in chromatin publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905767106 – volume: 76 start-page: 3446 year: 2016 end-page: 3450 ident: CR13 article-title: DNA methylation in cancer and aging publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3278 – volume: 13 year: 2012 ident: CR46 article-title: Hog1 bypasses stress-mediated down-regulation of transcription by RNA polymerase II redistribution and chromatin remodeling publication-title: Genome Biol. doi: 10.1186/gb-2012-13-11-r106 – volume: 129 start-page: 4480 year: 2016 end-page: 4495 ident: CR51 article-title: High resolution microscopy reveals the nuclear shape of budding yeast during cell cycle and in various biological states publication-title: J. Cell Sci. – volume: 24 start-page: 454 year: 2014 end-page: 466 ident: CR28 article-title: Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome publication-title: Genome Res. doi: 10.1101/gr.163592.113 – volume: 74 start-page: 4526 year: 2002 end-page: 4531 ident: CR58 article-title: A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry publication-title: Anal. Chem. doi: 10.1021/ac020050h – volume: 5 start-page: e1000478 year: 2009 ident: CR54 article-title: Yeast silent mating type loci form heterochromatic clusters through silencer protein-dependent long-range interactions publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000478 – ident: CR83 – volume: 9 start-page: e1003354 year: 2013 ident: CR19 article-title: Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003354 – volume: 573 start-page: 281 year: 2019 end-page: 286 ident: CR42 article-title: The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape publication-title: Nature doi: 10.1038/s41586-019-1534-3 – ident: CR62 – volume: 745 start-page: 499 year: 2011 end-page: 522 ident: CR50 article-title: Tracking of single and multiple genomic loci in living yeast cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-129-1_29 – volume: 17 year: 2016 ident: CR77 article-title: Chromosome3D: reconstructing three-dimensional chromosomal structures from Hi-C interaction frequency data using distance geometry simulated annealing publication-title: BMC Genom. doi: 10.1186/s12864-016-3210-4 – volume: 9 start-page: 465 year: 2008 end-page: 476 ident: CR16 article-title: DNA methylation landscapes: provocative insights from epigenomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2341 – volume: 30 start-page: 660 year: 2016 end-page: 672 ident: CR47 article-title: Nucleosome repositioning underlies dynamic gene expression publication-title: Genes Dev. doi: 10.1101/gad.274910.115 – volume: 10 year: 2009 ident: 23142_CR61 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 7 start-page: 542 year: 2012 ident: 23142_CR12 publication-title: Epigenetics doi: 10.4161/epi.20523 – volume: 43 start-page: 8299 year: 2015 ident: 23142_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv723 – volume: 10 start-page: 18 year: 2017 ident: 23142_CR20 publication-title: Epigenetics Chromatin doi: 10.1186/s13072-017-0125-5 – volume: 21 start-page: 2205 year: 2012 ident: 23142_CR4 publication-title: Hum. Mol. Genet doi: 10.1093/hmg/dds035 – volume: 28 start-page: 589 year: 2012 ident: 23142_CR63 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr700 – volume: 25 start-page: 1754 year: 2009 ident: 23142_CR70 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 76 start-page: 3446 year: 2016 ident: 23142_CR13 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3278 – volume: 44 start-page: 1236 year: 2012 ident: 23142_CR9 publication-title: Nat. Genet doi: 10.1038/ng.2443 – volume: 13 start-page: 837 year: 1997 ident: 23142_CR38 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T – ident: 23142_CR31 doi: 10.7554/eLife.23623 – volume: 10 year: 2019 ident: 23142_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12355-7 – volume: 35 start-page: 737 year: 2019 ident: 23142_CR59 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty690 – volume: 141 start-page: 21 year: 1998 ident: 23142_CR52 publication-title: J. Cell Biol. doi: 10.1083/jcb.141.1.21 – volume: 74 start-page: 5608 year: 2014 ident: 23142_CR8 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3659 – volume: 9 start-page: 465 year: 2008 ident: 23142_CR16 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2341 – volume: 4 start-page: e06205 year: 2015 ident: 23142_CR27 publication-title: Elife doi: 10.7554/eLife.06205 – volume: 15 year: 2014 ident: 23142_CR67 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 99 start-page: 451 year: 1999 ident: 23142_CR1 publication-title: Cell doi: 10.1016/S0092-8674(00)81532-9 – volume: 29 start-page: 15 year: 2013 ident: 23142_CR65 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 113 start-page: 5018 year: 2016 ident: 23142_CR6 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1604365113 – volume: 452 start-page: 215 year: 2008 ident: 23142_CR23 publication-title: Nature doi: 10.1038/nature06745 – volume: 123 start-page: 56 year: 2017 ident: 23142_CR72 publication-title: Methods doi: 10.1016/j.ymeth.2017.04.004 – volume: 17 year: 2016 ident: 23142_CR77 publication-title: BMC Genom. doi: 10.1186/s12864-016-3210-4 – volume: 129 start-page: 4480 year: 2016 ident: 23142_CR51 publication-title: J. Cell Sci. doi: 10.1242/jcs.188250 – volume: 39 start-page: 6956 year: 2011 ident: 23142_CR25 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr263 – volume: 7 start-page: e48401 year: 2012 ident: 23142_CR10 publication-title: PLoS One doi: 10.1371/journal.pone.0048401 – volume: 13 year: 2012 ident: 23142_CR46 publication-title: Genome Biol. doi: 10.1186/gb-2012-13-11-r106 – volume: 27 start-page: 8243 year: 2007 ident: 23142_CR44 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00899-07 – volume: 106 start-page: 22187 year: 2009 ident: 23142_CR36 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905767106 – volume: 448 start-page: 714 year: 2007 ident: 23142_CR40 publication-title: Nature doi: 10.1038/nature05987 – volume: 123 start-page: 785 year: 1993 ident: 23142_CR60 publication-title: J. Cell Biol. doi: 10.1083/jcb.123.4.785 – volume: 13 start-page: 679 year: 2012 ident: 23142_CR2 publication-title: Nat. Rev. Genet doi: 10.1038/nrg3270 – volume: 213 start-page: 384 year: 2007 ident: 23142_CR7 publication-title: J. Cell Physiol. doi: 10.1002/jcp.21224 – volume: 46 start-page: W537 year: 2018 ident: 23142_CR69 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky379 – volume: 36 start-page: 2684 year: 2017 ident: 23142_CR32 publication-title: EMBO J. doi: 10.15252/embj.201797342 – volume: 287 start-page: 30941 year: 2012 ident: 23142_CR3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.366625 – volume: 38 start-page: 576 year: 2010 ident: 23142_CR68 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 132 start-page: 1782 year: 2010 ident: 23142_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910264z – volume: 38 start-page: 6054 year: 2010 ident: 23142_CR57 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq456 – volume: 9 start-page: 999 year: 2012 ident: 23142_CR80 publication-title: Nat. Methods doi: 10.1038/nmeth.2148 – ident: 23142_CR37 doi: 10.1093/nar/gkaa161 – volume: 16 year: 2015 ident: 23142_CR76 publication-title: BMC Bioinforma. doi: 10.1186/s12859-015-0683-0 – volume: 47 start-page: 746 year: 2015 ident: 23142_CR56 publication-title: Nat. Genet doi: 10.1038/ng.3291 – volume: 13 start-page: 1855 year: 2015 ident: 23142_CR49 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.10.063 – ident: 23142_CR62 – volume: 4 start-page: 80 year: 2014 ident: 23142_CR11 publication-title: Front Oncol. doi: 10.3389/fonc.2014.00080 – volume: 22 start-page: 2497 year: 2012 ident: 23142_CR29 publication-title: Genome Res. doi: 10.1101/gr.143008.112 – volume: 466 start-page: 388 year: 2010 ident: 23142_CR22 publication-title: Nature doi: 10.1038/nature09147 – volume: 30 start-page: 660 year: 2016 ident: 23142_CR47 publication-title: Genes Dev. doi: 10.1101/gad.274910.115 – volume: 47 start-page: 9511 year: 2019 ident: 23142_CR45 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz759 – volume: 27 start-page: 2149 year: 2011 ident: 23142_CR64 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr345 – volume: 30 start-page: i26 year: 2014 ident: 23142_CR78 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu268 – volume: 24 start-page: 454 year: 2014 ident: 23142_CR28 publication-title: Genome Res. doi: 10.1101/gr.163592.113 – volume: 74 start-page: 4526 year: 2002 ident: 23142_CR58 publication-title: Anal. Chem. doi: 10.1021/ac020050h – volume: 10 start-page: 161 year: 2009 ident: 23142_CR17 publication-title: Nat. Rev. Genet doi: 10.1038/nrg2522 – volume: 13 start-page: 265 year: 2013 ident: 23142_CR55 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.08.005 – volume: 73 start-page: 533 year: 2019 ident: 23142_CR34 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.11.020 – volume: 48 start-page: e29 year: 2020 ident: 23142_CR82 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa015 – volume: 156 start-page: 1286 year: 2014 ident: 23142_CR26 publication-title: Cell doi: 10.1016/j.cell.2014.01.029 – volume: 16 year: 2015 ident: 23142_CR48 publication-title: Genome Biol. doi: 10.1186/s13059-015-0766-2 – volume: 9 start-page: e1003354 year: 2013 ident: 23142_CR19 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003354 – volume: 24 start-page: 871 year: 2007 ident: 23142_CR35 publication-title: Yeast doi: 10.1002/yea.1538 – volume: 1829 start-page: 1161 year: 2013 ident: 23142_CR15 publication-title: Biochim Biophys. Acta doi: 10.1016/j.bbagrm.2013.08.001 – volume: 3 start-page: 99 year: 2016 ident: 23142_CR74 publication-title: Cell Syst. doi: 10.1016/j.cels.2015.07.012 – volume: 102 start-page: 2140 year: 2012 ident: 23142_CR18 publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.03.056 – ident: 23142_CR83 doi: 10.7554/eLife.20832 – volume: 5 start-page: e1000478 year: 2009 ident: 23142_CR54 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000478 – volume: 44 start-page: 9899 year: 2005 ident: 23142_CR24 publication-title: Biochemistry doi: 10.1021/bi047634t – volume: 113 start-page: E1663 year: 2016 ident: 23142_CR81 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1512577113 – volume: 465 start-page: 363 year: 2010 ident: 23142_CR30 publication-title: Nature doi: 10.1038/nature08973 – ident: 23142_CR39 doi: 10.1016/j.jgg.2019.12.006 – volume: 10 start-page: 1235 year: 2009 ident: 23142_CR41 publication-title: EMBO Rep. doi: 10.1038/embor.2009.218 – volume: 13 start-page: e1005665 year: 2017 ident: 23142_CR73 publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1005665 – volume: 573 start-page: 281 year: 2019 ident: 23142_CR42 publication-title: Nature doi: 10.1038/s41586-019-1534-3 – volume: 12 year: 2011 ident: 23142_CR66 publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-12-323 – volume: 20 start-page: 831 year: 2013 ident: 23142_CR79 publication-title: J. Comput Biol. doi: 10.1089/cmb.2013.0076 – volume: 22 start-page: 203 year: 1999 ident: 23142_CR14 publication-title: Nat. Genet. doi: 10.1038/9727 – volume: 9 start-page: 676 year: 2012 ident: 23142_CR84 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 14 start-page: 204 year: 2013 ident: 23142_CR5 publication-title: Nat. Rev. Genet doi: 10.1038/nrg3354 – volume: 745 start-page: 499 year: 2011 ident: 23142_CR50 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-129-1_29 – volume: 9 year: 2008 ident: 23142_CR71 publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 159 start-page: 1665 year: 2014 ident: 23142_CR75 publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 125 start-page: 859 year: 2006 ident: 23142_CR53 publication-title: Cell doi: 10.1016/j.cell.2006.04.028 |
SSID | ssj0000391844 |
Score | 2.5916655 |
Snippet | Determining the effect of DNA methylation on chromatin structure and function in higher organisms is challenging due to the extreme complexity of epigenetic... Multi-layered epigenetic regulation in higher eukaryotes makes it challenging to disentangle the individual effects of modifications on chromatin structure and... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3243 |
SubjectTerms | 14/63 45/15 45/22 45/23 45/44 45/70 45/90 45/91 631/114/2397 631/208/176/1988 631/337/100/102 631/337/386 64 Cellular structure Chromatin Deoxyribonucleic acid DNA DNA methylation DNA structure Epigenetics Eukaryotes Gene expression Genomes Heterochromatin Humanities and Social Sciences Mammals Mimicry multidisciplinary Multilayers Positioning devices (machinery) Science Science (multidisciplinary) Signal processing Structure-function relationships Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA5FELoRbSuOjzKF7urgyTtZ-qjYQl1VcBcykwQFnSs-Fv57TzJzbx1B3RRmNckwOY8k3yEn3yHku2KgumhtI6TnjfBeNN4k3UCrbZdSlyzky8l_TtXJmfh9Ls-flfrKOWEDPfCguL0gY9QdonLagqCt8UKDaTslWWujMIW9FCw8C6bKGswthi5ivCUD3OzdibIm5IwEhDQCl4HJTlQI-yco82WO5IuD0rL_HK-SlRE41vvDgNfIh9h_IstDKcnHzwR-leuO9SzVR6f7dS4M_TikudX48KM6k7Fex3rgi324jV_I2fHPv4cnzVgNoekk1feNUDh-6qOgAImaoDxFrACeWWWARYOBQ_BW6QAtgrYuhITRQKIhSRUTtJSvk6V-1scNUqeQY1PLPKdcSKm9TIkpqSMNVqTIK0LnmnHdSBWeK1ZcuXJkzY0btOlQm65o05mK_Fh8czMQZbzZ-yArfNEzk1yXF2h6N5revWf6imzPzeXGmXfnGOJXiagKUIpvi2acM_kgxPdx9lD6CEUz81pF9MTMkwFNW_rLi8K-bRDB4g5Skd25Q_z7-esCb_4PgbfIR5YdGGTDzDZZQo-JO4iJ7tuvxf2fAPYGBAw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9cwED_mhuCL-BOrUyr4pmFJ8_tBZHMbU_CLiIO9hbRJVNB27sfD_nsvafsdHTjoU5vS9HK5H7m7zwG8UQ1VXbSWCOk5Ed4L4k3ShLbadil1ydJcnPxlpY6OxecTebIBq7kWJqdVzjKxCOowdPmMfKdBu0SitqT8w-lfkrtG5ejq3ELDT60VwvsCMXYHtlAkG-T7rb2D1ddv61OXjIduhJiqZyg3O-eiyIqcqYCmjkDxsNBQBch_YX3ezJ28EUAteunwAdyfDMp6d-SAh7AR-0dwd2wxefUY6KdSBlkPqd5f7da5YfTVmP5W48X36wzS-ifWI47s5Vl8AseHB98_HpGpSwLpJNMXRCicP_NRMEoTM0F5hoSivrHK0CYadCiCt0oH2qIx14WQ0EtILCSpYqIt409hsx_6-AzqFLLPahvPGRdSai9TapTUkQUrUuQVsJkyrpsgxHMni9-uhLK5cSM1HVLTFWo6U8Hb9TunI4DGraP3MsHXIzP4dbkxnP1w015yQcaoO3TUWEsFa40Xmpq2U7JpbRRGVrA9L5ebduS5u-afCl6vH-NeygES38fhsowRimVEtgr0YpkXE1o-6X_9LKjcBi1b1CwVvJsZ4vrj___h57fP9QXcazJrUkkasw2byAvxJVpBF-2ribX_AZTlAkc priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS94wFD44ZbAbUedY_aLC7mZZkubzUl8VFfRqgnchbZJtMPuKHxf-e0_S9h2VORj0qj2hyck5zXOak-cAfJGMyDYYU3Hh6oo7xyuno6pIo0wbYxsNSYeTL6_k2TW_uBE3S8DGszA5aT9TWubP9Jgd9u2BZ5dOCQWISDh68TtY0RjXpTS-mZwt_qskxnPN-XA-htT6L00na1Cm6p_gy9fZka-2SPPKc7oGqwNkLA_7Tq7DUug24H1fRPL5I5DzfNCxnMfy-OqwTCWhn_sEtxKv-rhMNKy3oeyZYnHIm3B9evJ9dlYNdRCqVlD1WHGJ_acucEpIpNpLRxElEMeM1IQFjSGDd0YqTxqEa633EeOASH0UMkTS0PoTLHfzLnyGMvoUlRrmalpzIZQTMTIpVKDe8BjqAuioGdsOJOGpVsVvmzera217bVrUps3atLqAr4s2dz1Fxj-lj5LCF5KJ3jrfmN__sMN0Wy9CUC2GYrQhnDbacUV000rBGhO4FgXsjNNlB597sAyRq0A8RXAU-4vH6C1pC8R1Yf6UZbikiXOtADWZ5kmHpk-6Xz8z77ZG7IprRwEHo0H8efnbA976P_Ft-MCSqRJRMb0Dy2gbYRdxz2Ozlw39BS99-Wg priority: 102 providerName: Springer Nature |
Title | Impact of DNA methylation on 3D genome structure |
URI | https://link.springer.com/article/10.1038/s41467-021-23142-8 https://www.proquest.com/docview/2533558403 https://www.proquest.com/docview/2534616812 https://pubmed.ncbi.nlm.nih.gov/PMC8163762 https://doaj.org/article/d5ee7c9961b041b8a4708bc652b9e485 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_uA8EX8ROr51LBN60maT4fRPb2bj0XbhF1Yd9K2iancHZ17w7c_95J2q70OEUoLSRpm0xmOr9pMjMALyQjsnLGZFzYPOPW8sxqrzJSKlN5X3lDgnPy6VyeLPhsKZY70Kc76gh4caNpF_JJLdbnr3_93LxDgX_buozrNxc8invYbIBohaOE78I-aiYZjLHTDu7HL3Nu0KAJC82McJqh7s47P5qbHzPQVTGk_wCHXt9FeW0pNWqo6V2400HLdNzywj3Ycc19uNUmm9w8APIhOkSmK58ezcdpSB29aTfCpXjkR2kI1_rdpW1E2au1ewiL6fGXyUnW5UvIKkHVZcYl9p9axykhnupaWopoglhmpCbMaTQtamukqkmJsK6qa4_2gqe1F9J5UtL8Eew1q8Y9htTXwXo1zOY050IoK7xnUihHa8O9yxOgPWWKqgsmHnJanBdxUTvXRUvNAqlZRGoWOoGX23t-tKE0_tn6MBB82zKEwY4Fq_VZ0UlVUQvnVIUmGy1xQkttuSK6rKRgpXFciwQO-ukqetYqGCJcgbiL4Cieb6tRqsJSiW3c6iq24ZKG2GwJqME0Dzo0rGm-fY3xuTViXNQxCbzqGeLPy_8-4Cf_0ZmncJsF_iQiY_oA9pAh3DMERZflCHbVUuFZT9-PYH88nn2e4fXweP7xE5ZO5GQUfzeMokT8BgVSCYQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxFMNFAgSnCCq7diOc0CosCy7tN1TK_VmnNgGJEhKtxXaP8VvZOwkW6USvVXKKXEcZzyPb-zxDMAryYisXVlmXJg848bwzChfZKQqytr72pckHE4-WMjZEf9yLI434O9wFiaEVQ46MSpq29ZhjXyHIS4RaC1J_v7kdxaqRoXd1aGERscWe271B1225bv5BOf3NWPTT4cfZ1lfVSCrBS3OMi5RN1DjOCXEU2WlodgxMayUijCnEIBbU8rCkgrBT22tR1TtqfVCOk8qmmO_N-AmR98uSJGafl6v6YRs64rz_mwOydXOkkdNFOIgEEhxVD4j-xfLBIyw7eXIzEvbs9HqTe_B3R6uprsdf92HDdc8gFtdAcvVQyDzeMgybX06WeymoRz1qguuS_HKJ2lIAfvLpV2W2vNT9wiOroVaj2GzaRu3Bam3wSMumclpzoUojPCeSVE4akvuXZ4AHSij6z5BeaiT8VPHjfJc6Y6aGqmpIzW1SuDN-p2TLj3Hla0_BIKvW4bU2vFGe_pN95KqrXCuqNENpBXhtFKGF0RVtRSsKh1XIoHtYbp0L-9LfcGdCbxcP0ZJDdsvpnHteWzDJQ353hIoRtM8GtD4SfPje8z5rRA3o91K4O3AEBcf__8PP7l6rC_g9uzwYF_vzxd7T-EOC2xKRMbUNmwiX7hniLfOqueRyVP4et1S9Q9_hTc0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxFMNFAgSnCBa2_ErB4QKy9KlsOJApd6Mk9iA1Cal2wrtX-PXMXaSrVKJ3irlFDuJM54Zf_a8AF5IRmTliiLjwuYZt5ZnVnuVkVIVlfeVL0gITv6ykLv7_NOBONiAv0MsTHCrHHRiVNR1W4Uz8glDXCJwtST5xPduEV-ns7fHv7NQQSpYWodyGh2L7LnVH9y-Ld_MpzjXLxmbffj2fjfrKwxklaDqNOMS9QS1jlNCPNW1tBQ_QiwrpCbMaQTjtS2kqkmJQKiqa48I29PaC-k8KWmO770G11WuiiBdevZxfb4TMq9rzvs4HZLryZJHrRR8IhBUcVREo7UwlgwY4dyLXpoXTLVxBZzdgds9dE13Ol67CxuuuQc3umKWq_tA5jHgMm19Ol3spKE09apztEvxyqdpSAd75NIuY-3ZiXsA-1dCrYew2bSN24LU12F3XDCb05wLoazwnkmhHK0L7l2eAB0oY6o-WXmomXFootE816ajpkFqmkhNoxN4tX7muEvVcWnvd4Hg654hzXa80Z78ML3Umlo4pyrcEtKScFpqyxXRZSUFKwvHtUhge5gu08v-0pxzagLP180otcEUYxvXnsU-XNKQ-y0BNZrm0YDGLc2vnzH_t0YMjWtYAq8Hhjj_-P9_-NHlY30GN1GezOf5Yu8x3GKBS4nImN6GTWQL9wSh12n5NPJ4Ct-vWqj-ATrfO2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+DNA+methylation+on+3D+genome+structure&rft.jtitle=Nature+communications&rft.au=Buitrago%2C+Diana&rft.au=Labrador%2C+Mireia&rft.au=Arcon%2C+Juan+Pablo&rft.au=Lema%2C+Rafael&rft.date=2021-05-28&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=3243&rft_id=info:doi/10.1038%2Fs41467-021-23142-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |