Monoallelic and Biallelic Variants in EMC1 Identified in Individuals with Global Developmental Delay, Hypotonia, Scoliosis, and Cerebellar Atrophy
The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from non...
Saved in:
Published in | American journal of human genetics Vol. 98; no. 3; pp. 562 - 570 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.03.2016
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0002-9297 1537-6605 1537-6605 |
DOI | 10.1016/j.ajhg.2016.01.011 |
Cover
Summary: | The paradigm of a single gene associated with one specific phenotype and mode of inheritance has been repeatedly challenged. Genotype-phenotype correlations can often be traced to different mutation types, localization of the variants in distinct protein domains, or the trigger of or escape from nonsense-mediated decay. Using whole-exome sequencing, we identified homozygous variants in EMC1 that segregated with a phenotype of developmental delay, hypotonia, scoliosis, and cerebellar atrophy in three families. In addition, a de novo heterozygous EMC1 variant was seen in an individual with a similar clinical and MRI imaging phenotype. EMC1 encodes a member of the endoplasmic reticulum (ER)-membrane protein complex (EMC), an evolutionarily conserved complex that has been proposed to have multiple roles in ER-associated degradation, ER-mitochondria tethering, and proper assembly of multi-pass transmembrane proteins. Perturbations of protein folding and organelle crosstalk have been implicated in neurodegenerative processes including cerebellar atrophy. We propose EMC1 as a gene in which either biallelic or monoallelic variants might lead to a syndrome including intellectual disability and preferential degeneration of the cerebellum. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0002-9297 1537-6605 1537-6605 |
DOI: | 10.1016/j.ajhg.2016.01.011 |