Sparse-to-dense coarse-to-fine depth estimation for colonoscopy

Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcom...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 160; p. 106983
Main Authors Liu, Ruyu, Liu, Zhengzhe, Lu, Jiaming, Zhang, Guodao, Zuo, Zhigui, Sun, Bo, Zhang, Jianhua, Sheng, Weiguo, Guo, Ran, Zhang, Lejun, Hua, Xiaozhen
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.106983

Cover

Abstract Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.
AbstractList Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.
AbstractColonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.
Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.
ArticleNumber 106983
Author Zhang, Guodao
Sun, Bo
Zuo, Zhigui
Zhang, Lejun
Lu, Jiaming
Guo, Ran
Zhang, Jianhua
Sheng, Weiguo
Liu, Zhengzhe
Hua, Xiaozhen
Liu, Ruyu
Author_xml – sequence: 1
  givenname: Ruyu
  orcidid: 0000-0003-2130-9122
  surname: Liu
  fullname: Liu, Ruyu
  organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China
– sequence: 2
  givenname: Zhengzhe
  surname: Liu
  fullname: Liu, Zhengzhe
  organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China
– sequence: 3
  givenname: Jiaming
  surname: Lu
  fullname: Lu, Jiaming
  organization: School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
– sequence: 4
  givenname: Guodao
  surname: Zhang
  fullname: Zhang, Guodao
  organization: Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 5
  givenname: Zhigui
  surname: Zuo
  fullname: Zuo, Zhigui
  organization: Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
– sequence: 6
  givenname: Bo
  surname: Sun
  fullname: Sun, Bo
  organization: Haixi Institutes, Chinese Academy of Sciences Quanzhou Institute of Equipment Manufacturing, Quanzhou, 362000, China
– sequence: 7
  givenname: Jianhua
  orcidid: 0000-0001-7844-6035
  surname: Zhang
  fullname: Zhang, Jianhua
  organization: School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
– sequence: 8
  givenname: Weiguo
  surname: Sheng
  fullname: Sheng, Weiguo
  organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China
– sequence: 9
  givenname: Ran
  surname: Guo
  fullname: Guo, Ran
  email: guoran@gzhu.edu.cn
  organization: Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China
– sequence: 10
  givenname: Lejun
  surname: Zhang
  fullname: Zhang, Lejun
  organization: Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China
– sequence: 11
  givenname: Xiaozhen
  surname: Hua
  fullname: Hua, Xiaozhen
  email: 568903218@qq.com
  organization: Department of Pediatrics, Cangnan Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325800, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37187133$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2LEzEUhoOsuN3qX5ABb7yZevI1k9ysH4u7CgterF6HNHMGU6fJmEyF_nszdqtQEHqTQ8KTNyfve67IRYgBCakorCjQ5s1m5eJ2XPu4xW7FgPFy3GjFn5AFVa2uQXJxQRYAFGqhmLwkVzlvAEAAh2fkkrcFo5wvyNuH0aaM9RTrDkPGysXjvvcBqw7H6XuFefJbO_kYqj6mwgwxxOziuH9OnvZ2yPjisS7Jt9uPX28-1fdf7j7fvL-vnaRiqi2oNW8Vb1Dr1jGlNPRaKCEbzanUtoeeiVJaqzlg3ylsurbtWtBWSGzXfEleH3THFH_uSj9m67PDYbAB4y4bpqiQTMrixZK8OkE3cZdC6W6mpBZlnamXj9RuXVw0Yyo_THtztKYA1wfApZhzwt44P_3xYErWD4aCmbMwG_MvCzNnYQ5ZFAF1InB844yrHw5XsVj6y2My2XkMDjuf0E2mi_4ckesTETf44J0dfuAe819TqMnMgHmYp2UeFsbLnAhFi8C7_wuc18NvgpfSdA
CitedBy_id crossref_primary_10_1109_TCE_2024_3396812
crossref_primary_10_1016_j_compbiomed_2024_109038
crossref_primary_10_1016_j_compbiomed_2024_108546
Cites_doi 10.1145/37402.37422
10.1109/TMI.2019.2950936
10.1016/j.compbiomed.2022.105347
10.1016/j.media.2021.101990
10.1007/978-3-030-01234-2_1
10.1007/s11548-017-1609-2
10.1109/LRA.2018.2856519
10.1088/1742-6596/1883/1/012050
10.1016/j.compbiomed.2022.105760
10.1145/237170.237269
10.1109/CVPRW.2018.00295
10.1109/CVPR.2016.445
10.1109/CVPR.2019.00060
10.1109/CVPR.2018.00745
10.1109/TPAMI.2019.2929170
10.1080/21681163.2021.2012835
10.1016/j.media.2021.102100
10.1109/TMI.2018.2856109
10.1109/LRA.2021.3095528
10.1109/TRO.2015.2463671
10.1016/j.neucom.2022.10.064
10.1109/TPAMI.2017.2658577
10.1109/ICRA.2019.8793637
10.1007/s41315-017-0036-4
10.1016/j.compbiomed.2022.105810
10.1016/j.compbiomed.2022.105618
10.1109/TRO.2017.2705103
10.1016/j.cmpb.2018.02.006
10.1177/0278364916669237
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106983
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106983
ExternalDocumentID 37187133
10_1016_j_compbiomed_2023_106983
S0010482523004481
1_s2_0_S0010482523004481
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62202137; 62172353
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Zhejiang Province, China
  grantid: LQ22F030004
  funderid: http://dx.doi.org/10.13039/501100004731
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-a08b37836e997c28890f94845693159af0f249af7a930efd8e6d77d709a45e7b3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 01:41:13 EDT 2025
Tue Oct 07 06:38:31 EDT 2025
Wed Feb 19 02:23:42 EST 2025
Wed Oct 01 05:21:29 EDT 2025
Thu Apr 24 23:08:36 EDT 2025
Fri Feb 23 02:35:17 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Depth estimation
Endoscopic SLAM
Medical metaverse
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-a08b37836e997c28890f94845693159af0f249af7a930efd8e6d77d709a45e7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7844-6035
0000-0003-2130-9122
PMID 37187133
PQID 2815942812
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2814525502
proquest_journals_2815942812
pubmed_primary_37187133
crossref_citationtrail_10_1016_j_compbiomed_2023_106983
crossref_primary_10_1016_j_compbiomed_2023_106983
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106983
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004481
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like environment for machine learning, in: BigLearn, NIPS Workshop, (CONF) 2011.
Whelan, Salas-Moreno, Glocker, Davison, Leutenegger (b32) 2016; 35
L. Qiu, H. Ren, Endoscope navigation and 3D reconstruction of oral cavity by visual SLAM with mitigated data scarcity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR, 2018, pp. 2197–2204.
Chen, Gan, Chen, Zeng, Xu, Heidari, Zhu, Liu (b22) 2023; 517
Zhang, Navimipour (b4) 2022
Chen, Liao, Sun, Wang (b13) 2020
Turan, Almalioglu, Araujo, Konukoglu, Sitti (b25) 2017; 1
Engel, Koltun, Cremers (b35) 2017; 40
Zhou, Park, Koltun (b50) 2018
Mahmoud, Cirauqui, Hostettler, Doignon, Soler, Marescaux, Montiel (b8) 2016
Oda, Itoh, Tanaka, Takabatake, Mori, Natori, Mori (b18) 2022; 10
Lorensen, Cline (b38) 1987; 21
Mahmoud, Hostettler, Collins, Soler, Doignon, Montiel (b9) 2017
Cao, Huang, Liao, Deng, Wang (b21) 2021; 1883
X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 510–519.
Chen, Yang, Zhang (b49) 2022
Rodriguez, Montiel, Tardos (b27) 2022
Mahmoud, Collins, Hostettler, Soler, Doignon, Montiel (b10) 2018; 38
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b43) 2017; 30
Park, Joo, Hu, Liu, Kweon (b48) 2020
Eldesokey, Felsberg, Khan (b15) 2020; 42
Yu, Han, Li, Wei, Jiang, Chen, Yu (b29) 2022; 144
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 7132–7141.
Liu, Sinha, Ishii, Hager, Reiter, Taylor, Unberath (b20) 2019; 39
Gómez-Rodríguez, Lamarca, Morlana, Tardós, Montiel (b26) 2021
Ma, Wang, Zhang, Pizer, McGill, Rosenman, Frahm (b34) 2021; 72
Mur-Artal, Tardós (b7) 2017; 33
Eigen, Puhrsch, Fergus (b14) 2014; 27
Yan, Zhao, Bu, Jin (b37) 2021
Uhrig, Schneider, Schneider, Franke, Brox, Geiger (b40) 2017
Mur-Artal, Montiel, Tardos (b6) 2015; 31
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Qi, Zhao, Yu, Heidari, Wu, Cai, Alenezi, Mansour, Chen, Chen (b2) 2022; 148
Mal, Karaman (b42) 2018
Hu, Zhao, Feng, Zhang, Zhou, Gao, Guo (b3) 2022; 147
Su, Zhao, Elmannai, Heidari, Bourouis, Wu, Cai, Gui, Chen (b1) 2022; 146
Visentini-Scarzanella, Sugiura, Kaneko, Koto (b17) 2017; 12
Recasens, Lamarca, Fácil, Montiel, Civera (b33) 2021; 6
Chen, Bobrow, Athey, Mahmood, Durr (b31) 2019
B. Curless, M. Levoy, A volumetric method for building complex models from range images, in: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996, pp. 303–312.
Köhler, Haase, Bauer, Wasza, Kilgus, Maier-Hein, Feußner, Hornegger (b5) 2013
Ronneberger, Fischer, Brox (b36) 2015
Chen, Tang, John, Wan, Zhang (b11) 2018; 158
Song, Wang, Zhao, Huang, Dissanayake (b24) 2018; 3
J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 4104–4113.
F. Ma, G.V. Cavalheiro, S. Karaman, Self-supervised sparse-to-dense: self-supervised depth completion from LiDAR and monocular camera, in: IEEE International Conference on Robotics and Automation, Vol. 2019, ICRA, 2019, pp. 3288–3295.
Incetan, Celik, Obeid, Gokceler, Ozyoruk, Almalioglu, Chen, Mahmood, Gilbert, Durr, Turan (b41) 2021; 70
Guo, Liu, Mu, Hu (b44) 2022
Zhao, Wang, Chen, Shi, Feng (b28) 2022
Liu, Sinha, Unberath, Ishii, Hager, Taylor, Reiter (b19) 2018
Liu (10.1016/j.compbiomed.2023.106983_b19) 2018
Whelan (10.1016/j.compbiomed.2023.106983_b32) 2016; 35
Guo (10.1016/j.compbiomed.2023.106983_b44) 2022
Cao (10.1016/j.compbiomed.2023.106983_b21) 2021; 1883
Qi (10.1016/j.compbiomed.2023.106983_b2) 2022; 148
Yu (10.1016/j.compbiomed.2023.106983_b29) 2022; 144
Park (10.1016/j.compbiomed.2023.106983_b48) 2020
Mahmoud (10.1016/j.compbiomed.2023.106983_b10) 2018; 38
Uhrig (10.1016/j.compbiomed.2023.106983_b40) 2017
Chen (10.1016/j.compbiomed.2023.106983_b31) 2019
Turan (10.1016/j.compbiomed.2023.106983_b25) 2017; 1
Mahmoud (10.1016/j.compbiomed.2023.106983_b8) 2016
10.1016/j.compbiomed.2023.106983_b12
10.1016/j.compbiomed.2023.106983_b16
Chen (10.1016/j.compbiomed.2023.106983_b49) 2022
Yan (10.1016/j.compbiomed.2023.106983_b37) 2021
Mur-Artal (10.1016/j.compbiomed.2023.106983_b7) 2017; 33
Ma (10.1016/j.compbiomed.2023.106983_b34) 2021; 72
Engel (10.1016/j.compbiomed.2023.106983_b35) 2017; 40
Vaswani (10.1016/j.compbiomed.2023.106983_b43) 2017; 30
Zhou (10.1016/j.compbiomed.2023.106983_b50) 2018
Eigen (10.1016/j.compbiomed.2023.106983_b14) 2014; 27
Incetan (10.1016/j.compbiomed.2023.106983_b41) 2021; 70
Mahmoud (10.1016/j.compbiomed.2023.106983_b9) 2017
10.1016/j.compbiomed.2023.106983_b45
10.1016/j.compbiomed.2023.106983_b46
Lorensen (10.1016/j.compbiomed.2023.106983_b38) 1987; 21
10.1016/j.compbiomed.2023.106983_b47
Gómez-Rodríguez (10.1016/j.compbiomed.2023.106983_b26) 2021
Song (10.1016/j.compbiomed.2023.106983_b24) 2018; 3
Ronneberger (10.1016/j.compbiomed.2023.106983_b36) 2015
Zhao (10.1016/j.compbiomed.2023.106983_b28) 2022
Rodriguez (10.1016/j.compbiomed.2023.106983_b27) 2022
Eldesokey (10.1016/j.compbiomed.2023.106983_b15) 2020; 42
Chen (10.1016/j.compbiomed.2023.106983_b13) 2020
10.1016/j.compbiomed.2023.106983_b30
Visentini-Scarzanella (10.1016/j.compbiomed.2023.106983_b17) 2017; 12
Recasens (10.1016/j.compbiomed.2023.106983_b33) 2021; 6
10.1016/j.compbiomed.2023.106983_b39
Liu (10.1016/j.compbiomed.2023.106983_b20) 2019; 39
Chen (10.1016/j.compbiomed.2023.106983_b22) 2023; 517
Köhler (10.1016/j.compbiomed.2023.106983_b5) 2013
Chen (10.1016/j.compbiomed.2023.106983_b11) 2018; 158
Mal (10.1016/j.compbiomed.2023.106983_b42) 2018
10.1016/j.compbiomed.2023.106983_b23
Su (10.1016/j.compbiomed.2023.106983_b1) 2022; 146
Hu (10.1016/j.compbiomed.2023.106983_b3) 2022; 147
Oda (10.1016/j.compbiomed.2023.106983_b18) 2022; 10
Zhang (10.1016/j.compbiomed.2023.106983_b4) 2022
Mur-Artal (10.1016/j.compbiomed.2023.106983_b6) 2015; 31
References_xml – start-page: 1
  year: 2022
  end-page: 13
  ident: b44
  article-title: Beyond self-attention: External attention using two linear layers for visual tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 72
  year: 2016
  end-page: 83
  ident: b8
  article-title: ORBSLAM-based endoscope tracking and 3D reconstruction
  publication-title: International Workshop on Computer-Assisted and Robotic Endoscopy
– reference: F. Ma, G.V. Cavalheiro, S. Karaman, Self-supervised sparse-to-dense: self-supervised depth completion from LiDAR and monocular camera, in: IEEE International Conference on Robotics and Automation, Vol. 2019, ICRA, 2019, pp. 3288–3295.
– volume: 70
  year: 2021
  ident: b41
  article-title: VR-Caps: a virtual environment for capsule endoscopy
  publication-title: Med. Image Anal.
– reference: J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 4104–4113.
– year: 2017
  ident: b9
  article-title: SLAM based quasi dense reconstruction for minimally invasive surgery scenes
– volume: 30
  year: 2017
  ident: b43
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 399
  year: 2017
  end-page: 409
  ident: b25
  article-title: A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots
  publication-title: Int. J. Intell. Robot. Appl.
– start-page: 11
  year: 2017
  end-page: 20
  ident: b40
  article-title: Sparsity invariant CNNs
  publication-title: International Conference on 3D Vision
– year: 2018
  ident: b50
  article-title: Open3D: a modern library for 3D data processing
– volume: 517
  start-page: 264
  year: 2023
  end-page: 278
  ident: b22
  article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
  publication-title: Neurocomputing
– volume: 6
  start-page: 7225
  year: 2021
  end-page: 7232
  ident: b33
  article-title: Endo-Depth-and-Motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints
  publication-title: IEEE Robot. Autom. Lett.
– volume: 144
  year: 2022
  ident: b29
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
– start-page: 120
  year: 2020
  end-page: 136
  ident: b48
  article-title: Non-local spatial propagation network for depth completion
  publication-title: European Conference on Computer Vision, Vol. 12358
– volume: 148
  year: 2022
  ident: b2
  article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation
  publication-title: Comput. Biol. Med.
– volume: 12
  start-page: 1089
  year: 2017
  end-page: 1099
  ident: b17
  article-title: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b36
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 128
  year: 2018
  end-page: 138
  ident: b19
  article-title: Self-supervised learning for dense depth estimation in monocular endoscopy
  publication-title: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis
– volume: 27
  start-page: 2366
  year: 2014
  end-page: 2374
  ident: b14
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4796
  year: 2018
  end-page: 4803
  ident: b42
  article-title: Sparse-to-dense: depth prediction from sparse depth samples and a single image
  publication-title: IEEE International Conference on Robotics and Automation
– start-page: 101
  year: 2020
  end-page: 106
  ident: b13
  article-title: Improved ORB-SLAM based 3D dense reconstruction for monocular endoscopic image
  publication-title: 2020 International Conference on Virtual Reality and Visualization
– volume: 72
  year: 2021
  ident: b34
  article-title: RNNSLAM: Reconstructing the 3D colon to visualize missing regions during a colonoscopy
  publication-title: Med. Image Anal.
– volume: 21
  start-page: 163
  year: 1987
  end-page: 169
  ident: b38
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: ACM Siggraph Comput. Graph.
– start-page: 8680
  year: 2022
  end-page: 8686
  ident: b49
  article-title: Depth completion using geometry-aware embedding
  publication-title: 2022 International Conference on Robotics and Automation
– start-page: 139
  year: 2013
  end-page: 146
  ident: b5
  article-title: ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 146
  year: 2022
  ident: b1
  article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: b4
  article-title: A comprehensive and systematic review of the IoT-based medical management systems: applications, techniques, trends and open issues
  publication-title: Sustainable Cities Soc.
– volume: 158
  start-page: 135
  year: 2018
  end-page: 146
  ident: b11
  article-title: SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality
  publication-title: Comput. Methods Programs Biomed.
– start-page: 464
  year: 2021
  end-page: 473
  ident: b37
  article-title: Channel-wise attention-based network for self-supervised monocular depth estimation
  publication-title: International Conference on 3D Vision
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 7132–7141.
– reference: B. Curless, M. Levoy, A volumetric method for building complex models from range images, in: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996, pp. 303–312.
– reference: R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like environment for machine learning, in: BigLearn, NIPS Workshop, (CONF) 2011.
– reference: L. Qiu, H. Ren, Endoscope navigation and 3D reconstruction of oral cavity by visual SLAM with mitigated data scarcity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR, 2018, pp. 2197–2204.
– volume: 1883
  year: 2021
  ident: b21
  article-title: Self-supervised dense depth prediction in monocular endoscope video for 3D liver surface reconstruction
  publication-title: J. Phys. Conf. Ser.
– volume: 39
  start-page: 1438
  year: 2019
  end-page: 1447
  ident: b20
  article-title: Dense depth estimation in monocular endoscopy with self-supervised learning methods
  publication-title: IEEE Trans. Med. Imaging
– reference: X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 510–519.
– volume: 147
  year: 2022
  ident: b3
  article-title: Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement
  publication-title: Comput. Biol. Med.
– reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– volume: 35
  start-page: 1697
  year: 2016
  end-page: 1716
  ident: b32
  article-title: ElasticFusion: Real-time dense SLAM and light source estimation
  publication-title: Int. J. Robot. Res.
– volume: 33
  start-page: 1255
  year: 2017
  end-page: 1262
  ident: b7
  article-title: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras
  publication-title: IEEE Trans. Robot.
– start-page: 1
  year: 2022
  ident: b28
  article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 40
  start-page: 611
  year: 2017
  end-page: 625
  ident: b35
  article-title: Direct sparse odometry
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2022
  ident: b27
  article-title: Tracking monocular camera pose and deformation for SLAM inside the human body
– year: 2019
  ident: b31
  article-title: Slam endoscopy enhanced by adversarial depth prediction
– volume: 38
  start-page: 79
  year: 2018
  end-page: 89
  ident: b10
  article-title: Live tracking and dense reconstruction for handheld monocular endoscopy
  publication-title: IEEE Trans. Med. Imaging
– start-page: 5170
  year: 2021
  end-page: 5177
  ident: b26
  article-title: SD-DefSLAM: Semi-direct monocular SLAM for deformable and intracorporeal scenes
  publication-title: 2021 IEEE International Conference on Robotics and Automation
– volume: 31
  start-page: 1147
  year: 2015
  end-page: 1163
  ident: b6
  article-title: ORB-SLAM: a versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
– volume: 42
  start-page: 2423
  year: 2020
  end-page: 2436
  ident: b15
  article-title: Confidence propagation through CNNs for guided sparse depth regression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 266
  year: 2022
  end-page: 273
  ident: b18
  article-title: Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imag. Vis.
– volume: 3
  start-page: 4068
  year: 2018
  end-page: 4075
  ident: b24
  article-title: MIS-SLAM: Real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing
  publication-title: IEEE Robot. Autom. Lett.
– volume: 21
  start-page: 163
  issue: 4
  year: 1987
  ident: 10.1016/j.compbiomed.2023.106983_b38
  article-title: Marching cubes: a high resolution 3D surface construction algorithm
  publication-title: ACM Siggraph Comput. Graph.
  doi: 10.1145/37402.37422
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b27
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b4
  article-title: A comprehensive and systematic review of the IoT-based medical management systems: applications, techniques, trends and open issues
  publication-title: Sustainable Cities Soc.
– year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b9
– volume: 39
  start-page: 1438
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106983_b20
  article-title: Dense depth estimation in monocular endoscopy with self-supervised learning methods
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2950936
– ident: 10.1016/j.compbiomed.2023.106983_b39
– start-page: 120
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106983_b48
  article-title: Non-local spatial propagation network for depth completion
– volume: 144
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b29
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105347
– volume: 70
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b41
  article-title: VR-Caps: a virtual environment for capsule endoscopy
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.101990
– ident: 10.1016/j.compbiomed.2023.106983_b47
  doi: 10.1007/978-3-030-01234-2_1
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b28
  article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 12
  start-page: 1089
  issue: 7
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b17
  article-title: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-017-1609-2
– year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b50
– volume: 3
  start-page: 4068
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b24
  article-title: MIS-SLAM: Real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2856519
– start-page: 464
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b37
  article-title: Channel-wise attention-based network for self-supervised monocular depth estimation
– volume: 1883
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b21
  article-title: Self-supervised dense depth prediction in monocular endoscope video for 3D liver surface reconstruction
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1883/1/012050
– volume: 147
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b3
  article-title: Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105760
– volume: 27
  start-page: 2366
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106983_b14
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 128
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b19
  article-title: Self-supervised learning for dense depth estimation in monocular endoscopy
– ident: 10.1016/j.compbiomed.2023.106983_b23
  doi: 10.1145/237170.237269
– ident: 10.1016/j.compbiomed.2023.106983_b12
  doi: 10.1109/CVPRW.2018.00295
– start-page: 8680
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b49
  article-title: Depth completion using geometry-aware embedding
– ident: 10.1016/j.compbiomed.2023.106983_b30
  doi: 10.1109/CVPR.2016.445
– ident: 10.1016/j.compbiomed.2023.106983_b46
  doi: 10.1109/CVPR.2019.00060
– ident: 10.1016/j.compbiomed.2023.106983_b45
  doi: 10.1109/CVPR.2018.00745
– volume: 42
  start-page: 2423
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106983_b15
  article-title: Confidence propagation through CNNs for guided sparse depth regression
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929170
– start-page: 4796
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b42
  article-title: Sparse-to-dense: depth prediction from sparse depth samples and a single image
– start-page: 5170
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b26
  article-title: SD-DefSLAM: Semi-direct monocular SLAM for deformable and intracorporeal scenes
– start-page: 101
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106983_b13
  article-title: Improved ORB-SLAM based 3D dense reconstruction for monocular endoscopic image
– volume: 10
  start-page: 266
  issue: 3
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b18
  article-title: Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imag. Vis.
  doi: 10.1080/21681163.2021.2012835
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b44
  article-title: Beyond self-attention: External attention using two linear layers for visual tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 72
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b34
  article-title: RNNSLAM: Reconstructing the 3D colon to visualize missing regions during a colonoscopy
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102100
– start-page: 72
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106983_b8
  article-title: ORBSLAM-based endoscope tracking and 3D reconstruction
– volume: 38
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b10
  article-title: Live tracking and dense reconstruction for handheld monocular endoscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2856109
– volume: 6
  start-page: 7225
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106983_b33
  article-title: Endo-Depth-and-Motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3095528
– volume: 31
  start-page: 1147
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106983_b6
  article-title: ORB-SLAM: a versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2015.2463671
– volume: 517
  start-page: 264
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106983_b22
  article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.064
– start-page: 139
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106983_b5
  article-title: ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy
– volume: 40
  start-page: 611
  issue: 3
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b35
  article-title: Direct sparse odometry
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2658577
– ident: 10.1016/j.compbiomed.2023.106983_b16
  doi: 10.1109/ICRA.2019.8793637
– volume: 1
  start-page: 399
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b25
  article-title: A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots
  publication-title: Int. J. Intell. Robot. Appl.
  doi: 10.1007/s41315-017-0036-4
– start-page: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b40
  article-title: Sparsity invariant CNNs
– volume: 148
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b2
  article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105810
– year: 2019
  ident: 10.1016/j.compbiomed.2023.106983_b31
– volume: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b43
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 146
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106983_b1
  article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105618
– volume: 33
  start-page: 1255
  issue: 5
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106983_b7
  article-title: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2017.2705103
– volume: 158
  start-page: 135
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106983_b11
  article-title: SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.02.006
– volume: 35
  start-page: 1697
  issue: 14
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106983_b32
  article-title: ElasticFusion: Real-time dense SLAM and light source estimation
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364916669237
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106983_b36
  article-title: U-Net: convolutional networks for biomedical image segmentation
SSID ssj0004030
Score 2.3923097
Snippet Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on...
AbstractColonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106983
SubjectTerms Algorithms
Colon - diagnostic imaging
Colon cancer
Colonoscopy
Colorectal cancer
Deep learning
Depth estimation
Depth perception
Endoscopic SLAM
Feedback, Sensory
Finite element method
Humans
Internal Medicine
Medical metaverse
Optimization
Other
Surface layers
Surgical mesh
Texture
Three dimensional models
Visual perception
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9wwDBbdFcZeyn73tm5ksFdvvjiJbcYo3Wgpgx5jW6FvxhfbjFGS2y596H8_KbZzL-u4xyRSEoQsf7alTwBvGye4taphLrQto4DHEFVXjJhjKifqVoy8BRfL5vyy-nJVX-3BMtfCUFpljoljoHZ9S3vk70uFEy9i5UV5vP7NqGsUna7mFho2tVZwH0eKsXuwXxIz1gz2P50uv37bVkpyEYtSMPpUuDhKuT0x44uSuGPR-ztqKo63G63EXRPWXYB0nJjOHsJBQpTFSXSBR7Dnu8dw_yKdmT9BOL7GxatnQ88wxmx80fb5OqBA4fx6-FkQ2UasYiwQxhbEZd31VLJy-xQuz05_fD5nqW0CaxH9DMxytRJUnOG1lm2plOZBVwqRkhZoQxt4wDWXDdJqwX1wyjdOSie5tlXt5Uo8g1nXd_4QCstDaGwQQTahqpVXKK9XOOVb7q2owxxkto1pE6c4tba4Njl57JfZWtWQVU206hwWk-Y68mrsoKOz-U2uG8VIZzD476Ar_6XrN2nIbszCbErDzfeRsQhdoyQuskot5vBh0kyoJKKNHb97lP3ETJ_a-vIc3kyPcVzTYY3tfH8zytCRc81R5nn0r8lQAgEFbS68-P_LX8ID-pOY2HYEs-HPjX-FEGpYvU7j4i88uRk9
  priority: 102
  providerName: ProQuest
Title Sparse-to-dense coarse-to-fine depth estimation for colonoscopy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004481
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004481
https://dx.doi.org/10.1016/j.compbiomed.2023.106983
https://www.ncbi.nlm.nih.gov/pubmed/37187133
https://www.proquest.com/docview/2815942812
https://www.proquest.com/docview/2814525502
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEA6iIL6Id_5aT6UH9xrNNmmTcE8q7q13uMhxwr6FbJugcrTLbX3wxb_9Zpq0InfCgi8tbWdImSaTb5r5JoR8yUvOrFU5LX1RUHR4FFC1oFg5RpQ8K3hbt-B6ko9vxfdpNl0hFx0XBtMqo-8PPr311vHOabTm6fz-Hjm-EEpAgJNi0SjR0q-FkLiLwcnzS5qHYDzQUMDfoHTM5gk5Xpi2HWjuJ7iNONzOteJvTVFvQdB2Khptkc2IIZOz8JofyIqrPpL167hKvg0AfA7hqqNNTcGrLFxS1N21B4GkdPPmLsHyGoG3mABwTbB6dVUjSeVph9yOLn9djGncKIEWgHcaapmacaRjOK1lkSqlmddCATbSHOCK9cxDlGW9tJoz50vl8lLKUjJtRebkjO-S1aqu3D5JLPM-t557mXuRKadAXs9gkrfMWZ75AZGdbUwRq4jjZha_TZcu9mBerGrQqiZYdUCGveY8VNJYQkd35jcdUxR8mwF3v4Su_J-uW8RBujBDs0gNM_90pAH52mu-6otLtnvY9RPTN5Uq-A4Q6Q3TAfncP4aRjMsztnL1YyuDi8wZA5m90L96Q3GAEPg74eBdr_aJbOBVyHQ7JKvNn0d3BJiqmR23gwaOcirhqEbfjsna2dWP8QTO55eTm59_ARFUIs0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxJttCwQJjgZv7MS2UIV4tNrS7gpBK_VmvImtqkLJ0qRC_XP9bczETvZC0V56TOKJo4k9_saeb4aQ13nJmbUqp6UvCooGjwKqFhQzx4iSZwXv8hZMZ_nkWHw9yU7WyFXPhcGwyt4mdoa6rAvcI3-XKlh4ASuP0w-L3xSrRuHpal9Cw8bSCuVOl2IsEjsO3OUfcOGanf0v8L_fpOne7tHnCY1VBmgBYKGllqk5Ry6D01oWqVKaeS0UAAvNoUvrmQcXxXppNWfOl8rlpZSlZNqKzMk5h_feIhuCCw3O38an3dm370tmJuOBBAPWToAzFmOJQoQZBo0Hkv1bLGIOt3Ot-HUL5HUAuFsI9-6TexHBJh_DkHtA1lz1kNyexjP6RwD_F-AsO9rWFGxa45Ki7q89NEhKt2hPE0zuEViTCcDmBHNnVzVSZC4fk-MbUeATsl7VlXtGEsu8z63nXuZeZMopaK_nADEsc5ZnfkRkrxtTxBzmWErjl-mD1c7MUqsGtWqCVkdkPEguQh6PFWR0r37T81TBshpYbFaQlf-SdU00EY0ZmyY1zPzoMiTB0Egx95lQ4xF5P0hGFBTQzYr9bvfjxAxdLefOiLwaHoMdwcMhW7n6omuDR9wZgzZPw_gaFMUBwOBmxub_X_6S3JkcTQ_N4f7sYIvcxa8KQXXbZL09v3DPAb618xdxjiTk501Py78X51Tp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFAgSHE29cRLbqiqEKKuW0goJKu3NeBNbCKFkIalQ_1p_XWfiOHuhaC89JvHE0WRm_NnzAnhdVIJbqwpW-bJkZPAYouqMUeWYrBJ5Kfq6BSenxeFZ9mmezzfgMubCUFhltIm9oa6aks7Id1OFCy9i5Wm664ewiC8Hs3fL34w6SJGnNbbTCCJy7C7-4vat3T86wH_9Jk1nH799OGRDhwFWIlDomOVqISiPwWkty1Qpzb3OFIIKLXA667nH7Yn10mrBna-UKyopK8m1zXInFwLfewtuSyE0hRPKuVzlZHIR0l_QzmW4DRuiiEJsGYWLh_T6t9S-HG8XWonrlsbroG-_BM7uwd0Buybvg7Ddhw1XP4Ctk8E7_xCB_xK3yY51DUNr1rqkbOK1xwFJ5Zbdj4TKeoR8yQQBc0JVs-uGkmMuHsHZjbDvMWzWTe22IbHc-8J64WXhs1w5heP1AsGF5c6K3E9ARt6YcqheTk00fpkYpvbTrLhqiKsmcHUC05FyGSp4rEGjI_tNzFBFm2pwmVmDVv6L1rWDcWjN1LSp4eZrXxsJRSOlqmeZmk5gb6Qc8E_ANWvOuxPlxIxTrbRmAq_Gx2hByC1ka9ec92PIuZ1zHPMkyNfIKIHQhY4xnv7_5S9hC5XRfD46PX4Gd-ijQjTdDmx2f87dc8Rt3eJFryAJfL9pjbwCubFSgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse-to-dense+coarse-to-fine+depth+estimation+for+colonoscopy&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Liu%2C+Ruyu&rft.au=Liu%2C+Zhengzhe&rft.au=Lu%2C+Jiaming&rft.au=Zhang%2C+Guodao&rft.date=2023-06-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=160&rft.spage=106983&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106983&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00079%2Fcov150h.gif