Sparse-to-dense coarse-to-fine depth estimation for colonoscopy
Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcom...
Saved in:
| Published in | Computers in biology and medicine Vol. 160; p. 106983 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.06.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.106983 |
Cover
| Abstract | Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system. |
|---|---|
| AbstractList | Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system.Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system. AbstractColonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system. Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on diagnosis and potential surgery due to the narrow observation perspective and limited perception dimension. Dense depth estimation can overcome the above limitations and offer doctors straightforward 3D visual feedback. To this end, we propose a novel sparse-to-dense coarse-to-fine depth estimation solution for colonoscopic scenes based on the direct SLAM algorithm. The highlight of our solution is that we utilize the scattered 3D points obtained from SLAM to generate accurate and dense depth in full resolution. This is done by a deep learning (DL)-based depth completion network and a reconstruction system. The depth completion network effectively extracts texture, geometry, and structure features from sparse depth along with RGB data to recover the dense depth map. The reconstruction system further updates the dense depth map using a photometric error-based optimization and a mesh modeling approach to reconstruct a more accurate 3D model of colons with detailed surface texture. We show the effectiveness and accuracy of our depth estimation method on near photo-realistic challenging colon datasets. Experiments demonstrate that the strategy of sparse-to-dense coarse-to-fine can significantly improve the performance of depth estimation and smoothly fuse direct SLAM and DL-based depth estimation into a complete dense reconstruction system. |
| ArticleNumber | 106983 |
| Author | Zhang, Guodao Sun, Bo Zuo, Zhigui Zhang, Lejun Lu, Jiaming Guo, Ran Zhang, Jianhua Sheng, Weiguo Liu, Zhengzhe Hua, Xiaozhen Liu, Ruyu |
| Author_xml | – sequence: 1 givenname: Ruyu orcidid: 0000-0003-2130-9122 surname: Liu fullname: Liu, Ruyu organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China – sequence: 2 givenname: Zhengzhe surname: Liu fullname: Liu, Zhengzhe organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China – sequence: 3 givenname: Jiaming surname: Lu fullname: Lu, Jiaming organization: School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China – sequence: 4 givenname: Guodao surname: Zhang fullname: Zhang, Guodao organization: Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 5 givenname: Zhigui surname: Zuo fullname: Zuo, Zhigui organization: Department of Colorectal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China – sequence: 6 givenname: Bo surname: Sun fullname: Sun, Bo organization: Haixi Institutes, Chinese Academy of Sciences Quanzhou Institute of Equipment Manufacturing, Quanzhou, 362000, China – sequence: 7 givenname: Jianhua orcidid: 0000-0001-7844-6035 surname: Zhang fullname: Zhang, Jianhua organization: School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China – sequence: 8 givenname: Weiguo surname: Sheng fullname: Sheng, Weiguo organization: School of Information Science and Technology, Hangzhou Normal University, Hangzhou, 311121, China – sequence: 9 givenname: Ran surname: Guo fullname: Guo, Ran email: guoran@gzhu.edu.cn organization: Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China – sequence: 10 givenname: Lejun surname: Zhang fullname: Zhang, Lejun organization: Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou, 510006, China – sequence: 11 givenname: Xiaozhen surname: Hua fullname: Hua, Xiaozhen email: 568903218@qq.com organization: Department of Pediatrics, Cangnan Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325800, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37187133$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2LEzEUhoOsuN3qX5ABb7yZevI1k9ysH4u7CgterF6HNHMGU6fJmEyF_nszdqtQEHqTQ8KTNyfve67IRYgBCakorCjQ5s1m5eJ2XPu4xW7FgPFy3GjFn5AFVa2uQXJxQRYAFGqhmLwkVzlvAEAAh2fkkrcFo5wvyNuH0aaM9RTrDkPGysXjvvcBqw7H6XuFefJbO_kYqj6mwgwxxOziuH9OnvZ2yPjisS7Jt9uPX28-1fdf7j7fvL-vnaRiqi2oNW8Vb1Dr1jGlNPRaKCEbzanUtoeeiVJaqzlg3ylsurbtWtBWSGzXfEleH3THFH_uSj9m67PDYbAB4y4bpqiQTMrixZK8OkE3cZdC6W6mpBZlnamXj9RuXVw0Yyo_THtztKYA1wfApZhzwt44P_3xYErWD4aCmbMwG_MvCzNnYQ5ZFAF1InB844yrHw5XsVj6y2My2XkMDjuf0E2mi_4ckesTETf44J0dfuAe819TqMnMgHmYp2UeFsbLnAhFi8C7_wuc18NvgpfSdA |
| CitedBy_id | crossref_primary_10_1109_TCE_2024_3396812 crossref_primary_10_1016_j_compbiomed_2024_109038 crossref_primary_10_1016_j_compbiomed_2024_108546 |
| Cites_doi | 10.1145/37402.37422 10.1109/TMI.2019.2950936 10.1016/j.compbiomed.2022.105347 10.1016/j.media.2021.101990 10.1007/978-3-030-01234-2_1 10.1007/s11548-017-1609-2 10.1109/LRA.2018.2856519 10.1088/1742-6596/1883/1/012050 10.1016/j.compbiomed.2022.105760 10.1145/237170.237269 10.1109/CVPRW.2018.00295 10.1109/CVPR.2016.445 10.1109/CVPR.2019.00060 10.1109/CVPR.2018.00745 10.1109/TPAMI.2019.2929170 10.1080/21681163.2021.2012835 10.1016/j.media.2021.102100 10.1109/TMI.2018.2856109 10.1109/LRA.2021.3095528 10.1109/TRO.2015.2463671 10.1016/j.neucom.2022.10.064 10.1109/TPAMI.2017.2658577 10.1109/ICRA.2019.8793637 10.1007/s41315-017-0036-4 10.1016/j.compbiomed.2022.105810 10.1016/j.compbiomed.2022.105618 10.1109/TRO.2017.2705103 10.1016/j.cmpb.2018.02.006 10.1177/0278364916669237 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.106983 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106983 |
| ExternalDocumentID | 37187133 10_1016_j_compbiomed_2023_106983 S0010482523004481 1_s2_0_S0010482523004481 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62202137; 62172353 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Zhejiang Province, China grantid: LQ22F030004 funderid: http://dx.doi.org/10.13039/501100004731 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-a08b37836e997c28890f94845693159af0f249af7a930efd8e6d77d709a45e7b3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 01:41:13 EDT 2025 Tue Oct 07 06:38:31 EDT 2025 Wed Feb 19 02:23:42 EST 2025 Wed Oct 01 05:21:29 EDT 2025 Thu Apr 24 23:08:36 EDT 2025 Fri Feb 23 02:35:17 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Depth estimation Endoscopic SLAM Medical metaverse |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-a08b37836e997c28890f94845693159af0f249af7a930efd8e6d77d709a45e7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7844-6035 0000-0003-2130-9122 |
| PMID | 37187133 |
| PQID | 2815942812 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2814525502 proquest_journals_2815942812 pubmed_primary_37187133 crossref_citationtrail_10_1016_j_compbiomed_2023_106983 crossref_primary_10_1016_j_compbiomed_2023_106983 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106983 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004481 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106983 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like environment for machine learning, in: BigLearn, NIPS Workshop, (CONF) 2011. Whelan, Salas-Moreno, Glocker, Davison, Leutenegger (b32) 2016; 35 L. Qiu, H. Ren, Endoscope navigation and 3D reconstruction of oral cavity by visual SLAM with mitigated data scarcity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR, 2018, pp. 2197–2204. Chen, Gan, Chen, Zeng, Xu, Heidari, Zhu, Liu (b22) 2023; 517 Zhang, Navimipour (b4) 2022 Chen, Liao, Sun, Wang (b13) 2020 Turan, Almalioglu, Araujo, Konukoglu, Sitti (b25) 2017; 1 Engel, Koltun, Cremers (b35) 2017; 40 Zhou, Park, Koltun (b50) 2018 Mahmoud, Cirauqui, Hostettler, Doignon, Soler, Marescaux, Montiel (b8) 2016 Oda, Itoh, Tanaka, Takabatake, Mori, Natori, Mori (b18) 2022; 10 Lorensen, Cline (b38) 1987; 21 Mahmoud, Hostettler, Collins, Soler, Doignon, Montiel (b9) 2017 Cao, Huang, Liao, Deng, Wang (b21) 2021; 1883 X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 510–519. Chen, Yang, Zhang (b49) 2022 Rodriguez, Montiel, Tardos (b27) 2022 Mahmoud, Collins, Hostettler, Soler, Doignon, Montiel (b10) 2018; 38 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b43) 2017; 30 Park, Joo, Hu, Liu, Kweon (b48) 2020 Eldesokey, Felsberg, Khan (b15) 2020; 42 Yu, Han, Li, Wei, Jiang, Chen, Yu (b29) 2022; 144 J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 7132–7141. Liu, Sinha, Ishii, Hager, Reiter, Taylor, Unberath (b20) 2019; 39 Gómez-Rodríguez, Lamarca, Morlana, Tardós, Montiel (b26) 2021 Ma, Wang, Zhang, Pizer, McGill, Rosenman, Frahm (b34) 2021; 72 Mur-Artal, Tardós (b7) 2017; 33 Eigen, Puhrsch, Fergus (b14) 2014; 27 Yan, Zhao, Bu, Jin (b37) 2021 Uhrig, Schneider, Schneider, Franke, Brox, Geiger (b40) 2017 Mur-Artal, Montiel, Tardos (b6) 2015; 31 S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. Qi, Zhao, Yu, Heidari, Wu, Cai, Alenezi, Mansour, Chen, Chen (b2) 2022; 148 Mal, Karaman (b42) 2018 Hu, Zhao, Feng, Zhang, Zhou, Gao, Guo (b3) 2022; 147 Su, Zhao, Elmannai, Heidari, Bourouis, Wu, Cai, Gui, Chen (b1) 2022; 146 Visentini-Scarzanella, Sugiura, Kaneko, Koto (b17) 2017; 12 Recasens, Lamarca, Fácil, Montiel, Civera (b33) 2021; 6 Chen, Bobrow, Athey, Mahmood, Durr (b31) 2019 B. Curless, M. Levoy, A volumetric method for building complex models from range images, in: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996, pp. 303–312. Köhler, Haase, Bauer, Wasza, Kilgus, Maier-Hein, Feußner, Hornegger (b5) 2013 Ronneberger, Fischer, Brox (b36) 2015 Chen, Tang, John, Wan, Zhang (b11) 2018; 158 Song, Wang, Zhao, Huang, Dissanayake (b24) 2018; 3 J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 4104–4113. F. Ma, G.V. Cavalheiro, S. Karaman, Self-supervised sparse-to-dense: self-supervised depth completion from LiDAR and monocular camera, in: IEEE International Conference on Robotics and Automation, Vol. 2019, ICRA, 2019, pp. 3288–3295. Incetan, Celik, Obeid, Gokceler, Ozyoruk, Almalioglu, Chen, Mahmood, Gilbert, Durr, Turan (b41) 2021; 70 Guo, Liu, Mu, Hu (b44) 2022 Zhao, Wang, Chen, Shi, Feng (b28) 2022 Liu, Sinha, Unberath, Ishii, Hager, Taylor, Reiter (b19) 2018 Liu (10.1016/j.compbiomed.2023.106983_b19) 2018 Whelan (10.1016/j.compbiomed.2023.106983_b32) 2016; 35 Guo (10.1016/j.compbiomed.2023.106983_b44) 2022 Cao (10.1016/j.compbiomed.2023.106983_b21) 2021; 1883 Qi (10.1016/j.compbiomed.2023.106983_b2) 2022; 148 Yu (10.1016/j.compbiomed.2023.106983_b29) 2022; 144 Park (10.1016/j.compbiomed.2023.106983_b48) 2020 Mahmoud (10.1016/j.compbiomed.2023.106983_b10) 2018; 38 Uhrig (10.1016/j.compbiomed.2023.106983_b40) 2017 Chen (10.1016/j.compbiomed.2023.106983_b31) 2019 Turan (10.1016/j.compbiomed.2023.106983_b25) 2017; 1 Mahmoud (10.1016/j.compbiomed.2023.106983_b8) 2016 10.1016/j.compbiomed.2023.106983_b12 10.1016/j.compbiomed.2023.106983_b16 Chen (10.1016/j.compbiomed.2023.106983_b49) 2022 Yan (10.1016/j.compbiomed.2023.106983_b37) 2021 Mur-Artal (10.1016/j.compbiomed.2023.106983_b7) 2017; 33 Ma (10.1016/j.compbiomed.2023.106983_b34) 2021; 72 Engel (10.1016/j.compbiomed.2023.106983_b35) 2017; 40 Vaswani (10.1016/j.compbiomed.2023.106983_b43) 2017; 30 Zhou (10.1016/j.compbiomed.2023.106983_b50) 2018 Eigen (10.1016/j.compbiomed.2023.106983_b14) 2014; 27 Incetan (10.1016/j.compbiomed.2023.106983_b41) 2021; 70 Mahmoud (10.1016/j.compbiomed.2023.106983_b9) 2017 10.1016/j.compbiomed.2023.106983_b45 10.1016/j.compbiomed.2023.106983_b46 Lorensen (10.1016/j.compbiomed.2023.106983_b38) 1987; 21 10.1016/j.compbiomed.2023.106983_b47 Gómez-Rodríguez (10.1016/j.compbiomed.2023.106983_b26) 2021 Song (10.1016/j.compbiomed.2023.106983_b24) 2018; 3 Ronneberger (10.1016/j.compbiomed.2023.106983_b36) 2015 Zhao (10.1016/j.compbiomed.2023.106983_b28) 2022 Rodriguez (10.1016/j.compbiomed.2023.106983_b27) 2022 Eldesokey (10.1016/j.compbiomed.2023.106983_b15) 2020; 42 Chen (10.1016/j.compbiomed.2023.106983_b13) 2020 10.1016/j.compbiomed.2023.106983_b30 Visentini-Scarzanella (10.1016/j.compbiomed.2023.106983_b17) 2017; 12 Recasens (10.1016/j.compbiomed.2023.106983_b33) 2021; 6 10.1016/j.compbiomed.2023.106983_b39 Liu (10.1016/j.compbiomed.2023.106983_b20) 2019; 39 Chen (10.1016/j.compbiomed.2023.106983_b22) 2023; 517 Köhler (10.1016/j.compbiomed.2023.106983_b5) 2013 Chen (10.1016/j.compbiomed.2023.106983_b11) 2018; 158 Mal (10.1016/j.compbiomed.2023.106983_b42) 2018 10.1016/j.compbiomed.2023.106983_b23 Su (10.1016/j.compbiomed.2023.106983_b1) 2022; 146 Hu (10.1016/j.compbiomed.2023.106983_b3) 2022; 147 Oda (10.1016/j.compbiomed.2023.106983_b18) 2022; 10 Zhang (10.1016/j.compbiomed.2023.106983_b4) 2022 Mur-Artal (10.1016/j.compbiomed.2023.106983_b6) 2015; 31 |
| References_xml | – start-page: 1 year: 2022 end-page: 13 ident: b44 article-title: Beyond self-attention: External attention using two linear layers for visual tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 72 year: 2016 end-page: 83 ident: b8 article-title: ORBSLAM-based endoscope tracking and 3D reconstruction publication-title: International Workshop on Computer-Assisted and Robotic Endoscopy – reference: F. Ma, G.V. Cavalheiro, S. Karaman, Self-supervised sparse-to-dense: self-supervised depth completion from LiDAR and monocular camera, in: IEEE International Conference on Robotics and Automation, Vol. 2019, ICRA, 2019, pp. 3288–3295. – volume: 70 year: 2021 ident: b41 article-title: VR-Caps: a virtual environment for capsule endoscopy publication-title: Med. Image Anal. – reference: J.L. Schonberger, J.-M. Frahm, Structure-from-motion revisited, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 4104–4113. – year: 2017 ident: b9 article-title: SLAM based quasi dense reconstruction for minimally invasive surgery scenes – volume: 30 year: 2017 ident: b43 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 1 start-page: 399 year: 2017 end-page: 409 ident: b25 article-title: A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots publication-title: Int. J. Intell. Robot. Appl. – start-page: 11 year: 2017 end-page: 20 ident: b40 article-title: Sparsity invariant CNNs publication-title: International Conference on 3D Vision – year: 2018 ident: b50 article-title: Open3D: a modern library for 3D data processing – volume: 517 start-page: 264 year: 2023 end-page: 278 ident: b22 article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet publication-title: Neurocomputing – volume: 6 start-page: 7225 year: 2021 end-page: 7232 ident: b33 article-title: Endo-Depth-and-Motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints publication-title: IEEE Robot. Autom. Lett. – volume: 144 year: 2022 ident: b29 article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study publication-title: Comput. Biol. Med. – start-page: 120 year: 2020 end-page: 136 ident: b48 article-title: Non-local spatial propagation network for depth completion publication-title: European Conference on Computer Vision, Vol. 12358 – volume: 148 year: 2022 ident: b2 article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation publication-title: Comput. Biol. Med. – volume: 12 start-page: 1089 year: 2017 end-page: 1099 ident: b17 article-title: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy publication-title: Int. J. Comput. Assist. Radiol. Surg. – start-page: 234 year: 2015 end-page: 241 ident: b36 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 128 year: 2018 end-page: 138 ident: b19 article-title: Self-supervised learning for dense depth estimation in monocular endoscopy publication-title: OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis – volume: 27 start-page: 2366 year: 2014 end-page: 2374 ident: b14 article-title: Depth map prediction from a single image using a multi-scale deep network publication-title: Adv. Neural Inf. Process. Syst. – start-page: 4796 year: 2018 end-page: 4803 ident: b42 article-title: Sparse-to-dense: depth prediction from sparse depth samples and a single image publication-title: IEEE International Conference on Robotics and Automation – start-page: 101 year: 2020 end-page: 106 ident: b13 article-title: Improved ORB-SLAM based 3D dense reconstruction for monocular endoscopic image publication-title: 2020 International Conference on Virtual Reality and Visualization – volume: 72 year: 2021 ident: b34 article-title: RNNSLAM: Reconstructing the 3D colon to visualize missing regions during a colonoscopy publication-title: Med. Image Anal. – volume: 21 start-page: 163 year: 1987 end-page: 169 ident: b38 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: ACM Siggraph Comput. Graph. – start-page: 8680 year: 2022 end-page: 8686 ident: b49 article-title: Depth completion using geometry-aware embedding publication-title: 2022 International Conference on Robotics and Automation – start-page: 139 year: 2013 end-page: 146 ident: b5 article-title: ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 146 year: 2022 ident: b1 article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization publication-title: Comput. Biol. Med. – year: 2022 ident: b4 article-title: A comprehensive and systematic review of the IoT-based medical management systems: applications, techniques, trends and open issues publication-title: Sustainable Cities Soc. – volume: 158 start-page: 135 year: 2018 end-page: 146 ident: b11 article-title: SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality publication-title: Comput. Methods Programs Biomed. – start-page: 464 year: 2021 end-page: 473 ident: b37 article-title: Channel-wise attention-based network for self-supervised monocular depth estimation publication-title: International Conference on 3D Vision – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 7132–7141. – reference: B. Curless, M. Levoy, A volumetric method for building complex models from range images, in: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996, pp. 303–312. – reference: R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: A matlab-like environment for machine learning, in: BigLearn, NIPS Workshop, (CONF) 2011. – reference: L. Qiu, H. Ren, Endoscope navigation and 3D reconstruction of oral cavity by visual SLAM with mitigated data scarcity, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR, 2018, pp. 2197–2204. – volume: 1883 year: 2021 ident: b21 article-title: Self-supervised dense depth prediction in monocular endoscope video for 3D liver surface reconstruction publication-title: J. Phys. Conf. Ser. – volume: 39 start-page: 1438 year: 2019 end-page: 1447 ident: b20 article-title: Dense depth estimation in monocular endoscopy with self-supervised learning methods publication-title: IEEE Trans. Med. Imaging – reference: X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 510–519. – volume: 147 year: 2022 ident: b3 article-title: Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement publication-title: Comput. Biol. Med. – reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. – volume: 35 start-page: 1697 year: 2016 end-page: 1716 ident: b32 article-title: ElasticFusion: Real-time dense SLAM and light source estimation publication-title: Int. J. Robot. Res. – volume: 33 start-page: 1255 year: 2017 end-page: 1262 ident: b7 article-title: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras publication-title: IEEE Trans. Robot. – start-page: 1 year: 2022 ident: b28 article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 40 start-page: 611 year: 2017 end-page: 625 ident: b35 article-title: Direct sparse odometry publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2022 ident: b27 article-title: Tracking monocular camera pose and deformation for SLAM inside the human body – year: 2019 ident: b31 article-title: Slam endoscopy enhanced by adversarial depth prediction – volume: 38 start-page: 79 year: 2018 end-page: 89 ident: b10 article-title: Live tracking and dense reconstruction for handheld monocular endoscopy publication-title: IEEE Trans. Med. Imaging – start-page: 5170 year: 2021 end-page: 5177 ident: b26 article-title: SD-DefSLAM: Semi-direct monocular SLAM for deformable and intracorporeal scenes publication-title: 2021 IEEE International Conference on Robotics and Automation – volume: 31 start-page: 1147 year: 2015 end-page: 1163 ident: b6 article-title: ORB-SLAM: a versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. – volume: 42 start-page: 2423 year: 2020 end-page: 2436 ident: b15 article-title: Confidence propagation through CNNs for guided sparse depth regression publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 266 year: 2022 end-page: 273 ident: b18 article-title: Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation publication-title: Comput. Methods Biomech. Biomed. Eng. Imag. Vis. – volume: 3 start-page: 4068 year: 2018 end-page: 4075 ident: b24 article-title: MIS-SLAM: Real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing publication-title: IEEE Robot. Autom. Lett. – volume: 21 start-page: 163 issue: 4 year: 1987 ident: 10.1016/j.compbiomed.2023.106983_b38 article-title: Marching cubes: a high resolution 3D surface construction algorithm publication-title: ACM Siggraph Comput. Graph. doi: 10.1145/37402.37422 – year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b27 – year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b4 article-title: A comprehensive and systematic review of the IoT-based medical management systems: applications, techniques, trends and open issues publication-title: Sustainable Cities Soc. – year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b9 – volume: 39 start-page: 1438 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2023.106983_b20 article-title: Dense depth estimation in monocular endoscopy with self-supervised learning methods publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2950936 – ident: 10.1016/j.compbiomed.2023.106983_b39 – start-page: 120 year: 2020 ident: 10.1016/j.compbiomed.2023.106983_b48 article-title: Non-local spatial propagation network for depth completion – volume: 144 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b29 article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105347 – volume: 70 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b41 article-title: VR-Caps: a virtual environment for capsule endoscopy publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101990 – ident: 10.1016/j.compbiomed.2023.106983_b47 doi: 10.1007/978-3-030-01234-2_1 – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b28 article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 12 start-page: 1089 issue: 7 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b17 article-title: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1609-2 – year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b50 – volume: 3 start-page: 4068 issue: 4 year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b24 article-title: MIS-SLAM: Real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2856519 – start-page: 464 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b37 article-title: Channel-wise attention-based network for self-supervised monocular depth estimation – volume: 1883 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b21 article-title: Self-supervised dense depth prediction in monocular endoscope video for 3D liver surface reconstruction publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1883/1/012050 – volume: 147 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b3 article-title: Colorectal polyp region extraction using saliency detection network with neutrosophic enhancement publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105760 – volume: 27 start-page: 2366 year: 2014 ident: 10.1016/j.compbiomed.2023.106983_b14 article-title: Depth map prediction from a single image using a multi-scale deep network publication-title: Adv. Neural Inf. Process. Syst. – start-page: 128 year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b19 article-title: Self-supervised learning for dense depth estimation in monocular endoscopy – ident: 10.1016/j.compbiomed.2023.106983_b23 doi: 10.1145/237170.237269 – ident: 10.1016/j.compbiomed.2023.106983_b12 doi: 10.1109/CVPRW.2018.00295 – start-page: 8680 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b49 article-title: Depth completion using geometry-aware embedding – ident: 10.1016/j.compbiomed.2023.106983_b30 doi: 10.1109/CVPR.2016.445 – ident: 10.1016/j.compbiomed.2023.106983_b46 doi: 10.1109/CVPR.2019.00060 – ident: 10.1016/j.compbiomed.2023.106983_b45 doi: 10.1109/CVPR.2018.00745 – volume: 42 start-page: 2423 issue: 10 year: 2020 ident: 10.1016/j.compbiomed.2023.106983_b15 article-title: Confidence propagation through CNNs for guided sparse depth regression publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2929170 – start-page: 4796 year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b42 article-title: Sparse-to-dense: depth prediction from sparse depth samples and a single image – start-page: 5170 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b26 article-title: SD-DefSLAM: Semi-direct monocular SLAM for deformable and intracorporeal scenes – start-page: 101 year: 2020 ident: 10.1016/j.compbiomed.2023.106983_b13 article-title: Improved ORB-SLAM based 3D dense reconstruction for monocular endoscopic image – volume: 10 start-page: 266 issue: 3 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b18 article-title: Depth estimation from single-shot monocular endoscope image using image domain adaptation and edge-aware depth estimation publication-title: Comput. Methods Biomech. Biomed. Eng. Imag. Vis. doi: 10.1080/21681163.2021.2012835 – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b44 article-title: Beyond self-attention: External attention using two linear layers for visual tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 72 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b34 article-title: RNNSLAM: Reconstructing the 3D colon to visualize missing regions during a colonoscopy publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102100 – start-page: 72 year: 2016 ident: 10.1016/j.compbiomed.2023.106983_b8 article-title: ORBSLAM-based endoscope tracking and 3D reconstruction – volume: 38 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b10 article-title: Live tracking and dense reconstruction for handheld monocular endoscopy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2856109 – volume: 6 start-page: 7225 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2023.106983_b33 article-title: Endo-Depth-and-Motion: Reconstruction and tracking in endoscopic videos using depth networks and photometric constraints publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3095528 – volume: 31 start-page: 1147 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2023.106983_b6 article-title: ORB-SLAM: a versatile and accurate monocular SLAM system publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2015.2463671 – volume: 517 start-page: 264 year: 2023 ident: 10.1016/j.compbiomed.2023.106983_b22 article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.064 – start-page: 139 year: 2013 ident: 10.1016/j.compbiomed.2023.106983_b5 article-title: ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy – volume: 40 start-page: 611 issue: 3 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b35 article-title: Direct sparse odometry publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2658577 – ident: 10.1016/j.compbiomed.2023.106983_b16 doi: 10.1109/ICRA.2019.8793637 – volume: 1 start-page: 399 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b25 article-title: A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots publication-title: Int. J. Intell. Robot. Appl. doi: 10.1007/s41315-017-0036-4 – start-page: 11 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b40 article-title: Sparsity invariant CNNs – volume: 148 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b2 article-title: Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105810 – year: 2019 ident: 10.1016/j.compbiomed.2023.106983_b31 – volume: 30 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b43 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: 146 year: 2022 ident: 10.1016/j.compbiomed.2023.106983_b1 article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105618 – volume: 33 start-page: 1255 issue: 5 year: 2017 ident: 10.1016/j.compbiomed.2023.106983_b7 article-title: ORB-SLAM2: an open-source slam system for monocular, stereo, and RGB-D cameras publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2017.2705103 – volume: 158 start-page: 135 year: 2018 ident: 10.1016/j.compbiomed.2023.106983_b11 article-title: SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.02.006 – volume: 35 start-page: 1697 issue: 14 year: 2016 ident: 10.1016/j.compbiomed.2023.106983_b32 article-title: ElasticFusion: Real-time dense SLAM and light source estimation publication-title: Int. J. Robot. Res. doi: 10.1177/0278364916669237 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2023.106983_b36 article-title: U-Net: convolutional networks for biomedical image segmentation |
| SSID | ssj0004030 |
| Score | 2.3923097 |
| Snippet | Colonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes challenges on... AbstractColonoscopy, as the golden standard for screening colon cancer and diseases, offers considerable benefits to patients. However, it also imposes... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106983 |
| SubjectTerms | Algorithms Colon - diagnostic imaging Colon cancer Colonoscopy Colorectal cancer Deep learning Depth estimation Depth perception Endoscopic SLAM Feedback, Sensory Finite element method Humans Internal Medicine Medical metaverse Optimization Other Surface layers Surgical mesh Texture Three dimensional models Visual perception |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9wwDBbdFcZeyn73tm5ksFdvvjiJbcYo3Wgpgx5jW6FvxhfbjFGS2y596H8_KbZzL-u4xyRSEoQsf7alTwBvGye4taphLrQto4DHEFVXjJhjKifqVoy8BRfL5vyy-nJVX-3BMtfCUFpljoljoHZ9S3vk70uFEy9i5UV5vP7NqGsUna7mFho2tVZwH0eKsXuwXxIz1gz2P50uv37bVkpyEYtSMPpUuDhKuT0x44uSuGPR-ztqKo63G63EXRPWXYB0nJjOHsJBQpTFSXSBR7Dnu8dw_yKdmT9BOL7GxatnQ88wxmx80fb5OqBA4fx6-FkQ2UasYiwQxhbEZd31VLJy-xQuz05_fD5nqW0CaxH9DMxytRJUnOG1lm2plOZBVwqRkhZoQxt4wDWXDdJqwX1wyjdOSie5tlXt5Uo8g1nXd_4QCstDaGwQQTahqpVXKK9XOOVb7q2owxxkto1pE6c4tba4Njl57JfZWtWQVU206hwWk-Y68mrsoKOz-U2uG8VIZzD476Ar_6XrN2nIbszCbErDzfeRsQhdoyQuskot5vBh0kyoJKKNHb97lP3ETJ_a-vIc3kyPcVzTYY3tfH8zytCRc81R5nn0r8lQAgEFbS68-P_LX8ID-pOY2HYEs-HPjX-FEGpYvU7j4i88uRk9 priority: 102 providerName: ProQuest |
| Title | Sparse-to-dense coarse-to-fine depth estimation for colonoscopy |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004481 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004481 https://dx.doi.org/10.1016/j.compbiomed.2023.106983 https://www.ncbi.nlm.nih.gov/pubmed/37187133 https://www.proquest.com/docview/2815942812 https://www.proquest.com/docview/2814525502 |
| Volume | 160 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS-QwEA6iIL6Id_5aT6UH9xrNNmmTcE8q7q13uMhxwr6FbJugcrTLbX3wxb_9Zpq0InfCgi8tbWdImSaTb5r5JoR8yUvOrFU5LX1RUHR4FFC1oFg5RpQ8K3hbt-B6ko9vxfdpNl0hFx0XBtMqo-8PPr311vHOabTm6fz-Hjm-EEpAgJNi0SjR0q-FkLiLwcnzS5qHYDzQUMDfoHTM5gk5Xpi2HWjuJ7iNONzOteJvTVFvQdB2Khptkc2IIZOz8JofyIqrPpL167hKvg0AfA7hqqNNTcGrLFxS1N21B4GkdPPmLsHyGoG3mABwTbB6dVUjSeVph9yOLn9djGncKIEWgHcaapmacaRjOK1lkSqlmddCATbSHOCK9cxDlGW9tJoz50vl8lLKUjJtRebkjO-S1aqu3D5JLPM-t557mXuRKadAXs9gkrfMWZ75AZGdbUwRq4jjZha_TZcu9mBerGrQqiZYdUCGveY8VNJYQkd35jcdUxR8mwF3v4Su_J-uW8RBujBDs0gNM_90pAH52mu-6otLtnvY9RPTN5Uq-A4Q6Q3TAfncP4aRjMsztnL1YyuDi8wZA5m90L96Q3GAEPg74eBdr_aJbOBVyHQ7JKvNn0d3BJiqmR23gwaOcirhqEbfjsna2dWP8QTO55eTm59_ARFUIs0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxJttCwQJjgZv7MS2UIV4tNrS7gpBK_VmvImtqkLJ0qRC_XP9bczETvZC0V56TOKJo4k9_saeb4aQ13nJmbUqp6UvCooGjwKqFhQzx4iSZwXv8hZMZ_nkWHw9yU7WyFXPhcGwyt4mdoa6rAvcI3-XKlh4ASuP0w-L3xSrRuHpal9Cw8bSCuVOl2IsEjsO3OUfcOGanf0v8L_fpOne7tHnCY1VBmgBYKGllqk5Ry6D01oWqVKaeS0UAAvNoUvrmQcXxXppNWfOl8rlpZSlZNqKzMk5h_feIhuCCw3O38an3dm370tmJuOBBAPWToAzFmOJQoQZBo0Hkv1bLGIOt3Ot-HUL5HUAuFsI9-6TexHBJh_DkHtA1lz1kNyexjP6RwD_F-AsO9rWFGxa45Ki7q89NEhKt2hPE0zuEViTCcDmBHNnVzVSZC4fk-MbUeATsl7VlXtGEsu8z63nXuZeZMopaK_nADEsc5ZnfkRkrxtTxBzmWErjl-mD1c7MUqsGtWqCVkdkPEguQh6PFWR0r37T81TBshpYbFaQlf-SdU00EY0ZmyY1zPzoMiTB0Egx95lQ4xF5P0hGFBTQzYr9bvfjxAxdLefOiLwaHoMdwcMhW7n6omuDR9wZgzZPw_gaFMUBwOBmxub_X_6S3JkcTQ_N4f7sYIvcxa8KQXXbZL09v3DPAb618xdxjiTk501Py78X51Tp |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFAgSHE29cRLbqiqEKKuW0goJKu3NeBNbCKFkIalQ_1p_XWfiOHuhaC89JvHE0WRm_NnzAnhdVIJbqwpW-bJkZPAYouqMUeWYrBJ5Kfq6BSenxeFZ9mmezzfgMubCUFhltIm9oa6aks7Id1OFCy9i5Wm664ewiC8Hs3fL34w6SJGnNbbTCCJy7C7-4vat3T86wH_9Jk1nH799OGRDhwFWIlDomOVqISiPwWkty1Qpzb3OFIIKLXA667nH7Yn10mrBna-UKyopK8m1zXInFwLfewtuSyE0hRPKuVzlZHIR0l_QzmW4DRuiiEJsGYWLh_T6t9S-HG8XWonrlsbroG-_BM7uwd0Buybvg7Ddhw1XP4Ctk8E7_xCB_xK3yY51DUNr1rqkbOK1xwFJ5Zbdj4TKeoR8yQQBc0JVs-uGkmMuHsHZjbDvMWzWTe22IbHc-8J64WXhs1w5heP1AsGF5c6K3E9ARt6YcqheTk00fpkYpvbTrLhqiKsmcHUC05FyGSp4rEGjI_tNzFBFm2pwmVmDVv6L1rWDcWjN1LSp4eZrXxsJRSOlqmeZmk5gb6Qc8E_ANWvOuxPlxIxTrbRmAq_Gx2hByC1ka9ec92PIuZ1zHPMkyNfIKIHQhY4xnv7_5S9hC5XRfD46PX4Gd-ijQjTdDmx2f87dc8Rt3eJFryAJfL9pjbwCubFSgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse-to-dense+coarse-to-fine+depth+estimation+for+colonoscopy&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Liu%2C+Ruyu&rft.au=Liu%2C+Zhengzhe&rft.au=Lu%2C+Jiaming&rft.au=Zhang%2C+Guodao&rft.date=2023-06-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=160&rft.spage=106983&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106983&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00079%2Fcov150h.gif |