Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals

Sleep is imperative for a healthy life as it rejuvenates memory, cognitive performance, cell repair and eliminates waste from the muscles. Sleep-related disorders such as insomnia, narcolepsy, sleep-disordered breathing (SDB), periodic leg movement (PLM), and bruxism lead to hormonal imbalance, slow...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 143; p. 105224
Main Authors Sharma, Manish, Darji, Jay, Thakrar, Madhav, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105224

Cover

More Information
Summary:Sleep is imperative for a healthy life as it rejuvenates memory, cognitive performance, cell repair and eliminates waste from the muscles. Sleep-related disorders such as insomnia, narcolepsy, sleep-disordered breathing (SDB), periodic leg movement (PLM), and bruxism lead to hormonal imbalance, slower reaction time, memory problems, depression, and headaches. This adversity of sleep disorder gained the attention of many sleep researchers. To examine the reasons for sleep disorders, it is imperative to monitor and analyze the sleep of the affected patients. The conventional method of monitoring sleep and identifying the sleep disorders using polysomnographic (PSG) recording is a complicated and cumbersome task in which multiple physiological signals with multiple modalities are recorded for a long (overnight) duration. The PSG recordings are carried out in sophisticated sleep laboratories and cannot be considered suitable for real-time sleep monitoring. Thus, a simple and patient-convenient system is highly desirable to monitor and analyze the quality of sleep. We proposed an automatic detection of sleep disorders using single modal electrooculogram (EOG) and electromyogram (EMG) signals. We have used a new maximally flat multiplier-less biorthogonal filter bank for obtaining discrete wavelet transform of the signals. We computed Hjorth parameters (HOP) such as activity, mobility, and complexity from the wavelet sub-bands. Highly discriminative HOP features are fed to different machine learning classifiers to develop the model. Our results show that the developed system can classify insomnia, narcolepsy, NFLE, PLM, and REM behaviour disorder (RBD) against normal healthy subjects with an accuracy of 99.7%, 97.6%, 97.5%, 97.5%, and 98.3%, respectively using combined features from EOG and EMG signal. The proposed model has yielded an accuracy of 94.3% in classifying six classes using an ensemble bagged trees classifier (EBTC) with a 10-fold cross-validation technique. Hence, EOG and EMG-based proposed methods can be deployed in a portable home-based environment to identify the type of sleep disorders automatically. •Novel automated system for identifying sleep disorders using EOG and EMG signals.•Used a linear phase maximally flat multiplier less wavelet filter bank-based.•Attained high classification performance using single-channel EMG and EOG.•Simple, fast and accurate method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2022.105224