PolypMixNet: Enhancing semi-supervised polyp segmentation with polyp-aware augmentation

AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer f...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 170; p. 108006
Main Authors Jia, Xiao, Shen, Yutian, Yang, Jianhong, Song, Ran, Zhang, Wei, Meng, Max Q.-H., Liao, Joseph C., Xing, Lei
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2024.108006

Cover

More Information
Summary:AI-assisted polyp segmentation in colonoscopy plays a crucial role in enabling prompt diagnosis and treatment of colorectal cancer. However, the lack of sufficient annotated data poses a significant challenge for supervised learning approaches. Existing semi-supervised learning methods also suffer from performance degradation, mainly due to task-specific characteristics, such as class imbalance in polyp segmentation. The purpose of this work is to develop an effective semi-supervised learning framework for accurate polyp segmentation in colonoscopy, addressing limited annotated data and class imbalance challenges. We proposed PolypMixNet, a semi-supervised framework, for colorectal polyp segmentation, utilizing novel augmentation techniques and a Mean Teacher architecture to improve model performance. PolypMixNet introduces the polyp-aware mixup (PolypMix) algorithm and incorporates dual-level consistency regularization. PolypMix addresses the class imbalance in colonoscopy datasets and enhances the diversity of training data. By performing a polyp-aware mixup on unlabeled samples, it generates mixed images with polyp context along with their artificial labels. A polyp-directed soft pseudo-labeling (PDSPL) mechanism was proposed to generate high-quality pseudo labels and eliminate the dilution of lesion features caused by mixup operations. To ensure consistency in the training phase, we introduce the PolypMix prediction consistency (PMPC) loss and PolypMix attention consistency (PMAC) loss, enforcing consistency at both image and feature levels. Code is available at https://github.com/YChienHung/PolypMix. PolypMixNet was evaluated on four public colonoscopy datasets, achieving 88.97% Dice and 88.85% mIoU on the benchmark dataset of Kvasir-SEG. In scenarios where the labeled training data is limited to 15%, PolypMixNet outperforms the state-of-the-art semi-supervised approaches with a 2.88-point improvement in Dice. It also shows the ability to reach performance comparable to the fully supervised counterpart. Additionally, we conducted extensive ablation studies to validate the effectiveness of each module and highlight the superiority of our proposed approach. PolypMixNet effectively addresses the challenges posed by limited annotated data and unbalanced class distributions in polyp segmentation. By leveraging unlabeled data and incorporating novel augmentation and consistency regularization techniques, our method achieves state-of-the-art performance. We believe that the insights and contributions presented in this work will pave the way for further advancements in semi-supervised polyp segmentation and inspire future research in the medical imaging domain. •Innovative Semi-Supervised Learning: PolypMixNet enhances polyp segmentation with limited labeled data.•PolypMix Augmentation Technique: Addresses class imbalance, enriches training data with detailed polyp features.•Dual-Level Consistency Regularization: PolypMixNet uses image/feature consistency for reliable polyp segmentation.•Validated on Multiple Datasets: PolypMixNet’s effectiveness proven on Kvasir-SEG, CVC-Clinic DB, and more.•Code Availability for Research: PolypMixNet code is public, boosting medical image analysis research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0010-4825
1879-0534
1879-0534
DOI:10.1016/j.compbiomed.2024.108006